TOPOLOGY PROCEEDINGS

Volume 1, 1976

Pages 125-127

http://topology.auburn.edu/tp/

ON THE COLLECTIONWISE NORMALITY OF GENERALIZED MANIFOLDS

by

K. Alster and P. L. Zenor

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON THE COLLECTIONWISE NORMALITY OF GENERALIZED MANIFOLDS

K. Alster and P. L. Zenor

In [R,Z], it is shown that every normal, locally connected, and locally compact Moore space is metrizable. In answer to a question of Wilder, [W], using the continuum hypothesis, an example is given in [Ru,Z] of a perfectly normal hereditarily separable space which is locally homeomorphic to E^2 but is not metrizable. It remains unknown if every perfectly normal locally Euclidian space is collectionwise normal. In this note we prove the following:

Theorem: If X is a perfectly normal, locally connected and locally compact T_2 -space and $\{H_a \mid a \in A\}$ is a discrete collection of closed Lindelöf sets in X, then there is a collection of mutually exclusive open sets $\{D_a \mid a \in A\}$ such that $H_a \subseteq D_a$ for each a in A.

Proof: Suppose that each H_a is compact. We will first prove our theorem for this special case. Since X is perfectly normal, there is a sequence $\{\mathrm{U}_n\}_{n<\omega}$ of open sets in X so that $\mathrm{H}=\mathrm{U}\{\mathrm{H}_a|a\in\mathrm{A}\}=\bigcap_{n<\omega}\mathrm{U}_n=\bigcap_{n<\omega}\overline{\mathrm{U}}_n$. For each i, let \mathfrak{A}_a , be the collection of components of U_n which intersect H_a and let $\mathrm{U}_{a,n}=\mathrm{U}\mathfrak{A}_{a,n}$.

For each a in A, there is an integer N(a) so that $U_{a,N(a)} \cap U_{b,N(a)} = \emptyset \text{ for all b in A - \{a\}}. \text{ To see that this is true, let D be a compact neighborhood of H_a so that D \(\Omega\) (H - H_a) = \(\Omega\). Since the boundary of D is compact, there is an N so that U_N does not intersect the boundary of D. We may let N(a) = N. Now, for each n, let H_n = U \{H_a \| N(a) < n\}. Since X is normal, there is a collection of \{V_n \| n \in \omega\} of mutually exclusive open sets so that H_n \(\Cin V_n\). For each a in A,$

126 Alster and Zenor

let $D_a = V_{N(a)} \cap U_{a,N(a)}$. Then $\{D_a | a \in A\}$ is a collection of mutually exclusive open sets so that $H_a \subset D_a$ for each a in A, which proves that the theorem is true if each H_a is compact.

Now, suppose that each H_a is Lindelöf. Since X is locally compact, for each a, there is a collection $\{F_{a,n}\}_{n\in\omega}$ of compact sets so that $H_a = \bigcup_{n\in\omega}F_{a,n}$. By the special case of our theorem that we have already established, there is a discrete collection $\{V_{a,n}|a\in A\}$ of open sets so that $F_{a,n}\subset V_{a,n}$ for each a in A and n in ω . Choose the $V_{a,n}$ so that $\overline{V}_{a,n}\cap H_b=\emptyset$ if $b\neq a$. For each a in A, let $D_a=\bigcup_{n\in\omega}(V_{a,n}-cl(\bigcup_{j\leq n}\{V_{b,j}|b\in A-\{a\}\}))$. Then $\{D_a|a\in A\}$ is a collection of mutually exclusive open sets so that $H_a\subset D_a$ for each a in A.

Corollary 1: [R,Z]. Every normal locally compact and locally connected Moore space is metrizable.

Proof: This follows from the fact that every Moore space is subparacompact; and so, with our theorem, we can show that the space is strongly screenable and hence metrizable by Bing's metrization theorem [B].

In much the same way, we obtain the following corollary:

Corollary 2: $[R,Z]_2$. Every perfectly normal, locally compact and locally connected θ -refinable space is paracompact.

We leave several questions unanswered:

Question 1: Is every perfectly normal, locally Euclidean space collectionwise normal?

Question 2: Is every locally connected and locally peripherally compact normal Moore space metrizable?

Question 3: Is every locally compact and locally connected normal T_2 -space collectionwise normal with respect to compact sets?

References

- [B] R. H. Bing, Metrization of topological spaces, Canad. J. Math. 3 (1951), 175-186.
- [R,Z] G. M. Reed and P. L. Zenor, A metrization theorem for normal Moore spaces, Studies in Topology, Academic Press, Inc., New York, 1975.
- $[R,Z]_2$, Metrization of Moore spaces and generalized manifolds, to appear in Fund. Math.
- [Ru,Z] M. E. Ruden and P. L. Zenor, A perfectly normal nonmetrizable manifold, Houston J. Math. 2 (1976): 129-134.

Polish Academy of Sciences Warsaw, Poland

Auburn University
Auburn, Alabama 36830