Research Announcement:

A COMPACT NONMETRIZABLE SPACE \(P \) SUCH THAT \(P^2 \) IS COMPLETELY NORMAL

by

Peter Nyikos
A COMPACT NONMETRIZABLE SPACE P
SUCH THAT P^2 IS COMPLETELY NORMAL

Peter Nyikos

In 1948, M. Katětov showed [2] that if P is a compact space such that $P \times P \times P$ is completely normal, then P is metrizable. [Throughout this announcement, the word "space" will always refer to a Hausdorff space.] Katětov then remarked that he did not know whether complete normality of $P \times P$ was enough to give metrizability. I will now give an example of a compact, nonmetrizable space P whose square, assuming Martin's axiom and the negation of the continuum hypothesis [abbreviated MA + \neg CH] is completely normal. I will also indicate why a "naive" example of such a space, if it exists, will be hard to come by.

1. The Example

Let $I = [0,1]$. Let $A \in I$ be of cardinality \aleph_1. Replace each a of A by two points, a^+ and a^-, with the convention that $a^- < a^+$; otherwise we keep the usual order of all of $(I-A) \cup A^+ \cup A^- = P$. Since P is complete in the order topology, it is a compact space, and nonmetrizable because it does not have a countable base: every base must include an open set with a^+ as its least element, and one with a^- as its greatest, for all $a \in A$.

2. Preliminary Lemmas

The following oft-used lemma is utilized in the proof:

Lemma 1. Let H and K be subsets of a space X. H and
K can be put into disjoint open subsets whenever there exist countable collections of open sets U_n and V_n so that $H \subseteq \bigcup_{n=1}^{\infty} U_n$, $K \subseteq \bigcup_{n=1}^{\infty} V_n$ and $\overline{U}_n \cap K = \emptyset$ and $\overline{V}_n \cap H = \emptyset$ for all n.

We also use:

Lemma 2. [3] [MA + CH] Let Y be a metric space of cardinality \aleph_1. Every subset of Y is an F_σ.

We also note that $(A^+)^2$ is homeomorphic to a subspace of the Sorgenfrey plane.

Lemma 3. [1] [MA + CH] If X is a subspace of the Sorgenfrey plane, of cardinal \aleph_1, then X is normal.

Lemma 4. The space $P^2 - (A^+ \cup A^-)^2$ is hereditarily Lindelöf.

Now, although P^2 is the union of the perfectly normal (under MA + CH) subspaces $P^2 - (A^+ \cup A^-)^2$, $(A^+)^2$, $(A^-)^2$, $A^+ \times A^-$, and $A^- \times A^+$, the whole space is not perfectly normal; for example, the diagonal is not a G_δ. But under MA + CH it is completely normal.

3. **Outline of the Proof**

Let H and K be subsets of P^2 such that $H \cap K = \emptyset$, $H \cap \overline{K} = \emptyset$. The objective is to find countable collections $\{U_n\}_n\to\infty$ and $\{V_n\}_n\to\infty$ of open subsets of P^2 as in Lemma 1. Using Lemma 4 and regularity of P^2, we can get $H - (A^+ \cup A^-)^2$ into a countable union of open sets whose closure misses K. By various symmetry arguments, the proof then boils down to showing that there exist countably many open sets whose closures miss K and whose union contains $H \cap (A^+)^2 = H_1$.
With the help of Lemma 3, we can get H_1 into an open subset of P^2 whose closure misses $K \cap (A^+)^2$. We will choose all our open sets to be contained in this one. By Lemma 2 [there is a coarser metric topology on $(A^+)^2$] we can let $H_1 = \bigcup_{n=1}^{\infty} F_n$ where each F_n is closed in $(A^+)^2$, and each $x \in F_n$ has a basic first-quadrant neighborhood whose closure misses K and which is a square $1/n$ on a side. For each F_n we cut up P^2 into countably many clopen squares $<1/n$ on a side. It is enough to take care of the points of F_n which lie in any one square S. Attach the basic $1/n$-neighborhoods to these points, trimming off the parts sticking out of S.

The only possible points of K in the closure of the resulting open set lie on a graph which can be thought of as a monotone function. Moreover, points of K can only lie along straight line segments of the graph, of which there are countably many.

Let E_n stand for the one-sided limit points of $F_n \cap S$ on the graph. We use Lemma 2 again to show $F_n \cap S = \bigcup_{n=1}^{\infty} C_{nm}$ where each C_{nm} is closed in the relative Euclidean topology of $E_n \cup (F_n \cap S)$. If we attach the basic $1/n$-neighborhoods to the points of C_{nm} and intersect with S, it turns out that the closure of the resulting set misses K.

4. What Happens if $2^{\aleph_0} < 2^{\aleph_1}$

The space P^2 is not completely normal in any model of set theory where $2^{\aleph_0} < 2^{\aleph_1}$. This is because P^2 has the uncountable discrete subspace $\{(a^+,a^-) | a \in A\}$ and is separable, and it is well known that:

Lemma 5. [${\aleph_0 \leq \aleph_1}$] Every discrete subspace of a separable, completely normal space is countable.
This lemma quickly involves us in a famous pair of problems of general topology: whether there exists an S-space (a regular, hereditarily separable space which is not hereditarily Lindelöf) or an L-space (a regular, hereditarily Lindelöf space which is not hereditarily separable). Such spaces have been constructed in some models of set theory; but, in particular, no one has constructed such spaces assuming only $2^{\aleph_0} < 2^{\aleph_1}$.

But from Lemma 5 it is only a short step to:

Theorem $[2^{\aleph_0} < 2^{\aleph_1}]$ If X is a compact, nonmetrizable space such that X^2 is completely normal, then at least one of the following is true:

1. X is an L-space
2. X^2 is an S-space
3. X^2 contains both an S-space and an L-space.

If we combine this theorem with the result that MA + CH implies every compact space of countable spread is hereditarily separable, we see that a "naive" example (one whose basic cardinal invariants like density, spread, and hereditary Lindelöf degree do not vary with the model of ZFC used) would have a hereditarily separable square which is not hereditarily Lindelöf (because of not having a G_δ-diagonal). Such a compact space has not yet been constructed in any model of set theory!

Even if we restrict ourselves to $2^{\aleph_0} < 2^{\aleph_1}$, we are out of reasonable candidates: Mary Ellen Rudin showed, after I came up with these results, that the square of a Souslin line is never completely normal.
References

Auburn University
Auburn, Alabama 36830

and

Ohio University Institute for Medicine and Mathematics
Athens, Ohio 45701