ON PERFECT SUBPARACOMPACTNESS
AND A METRIZATION THEOREM FOR
MOORE SPACES

by

J. CHABER AND P. ZENOR
ON PERFECT SUBPARACOMPACTNESS AND A
METRIZATION THEOREM FOR MOORE SPACES

J. Chaber and P. Zenor

In this paper, we give a characterization of perfectly
subparacompact spaces and we use this characterization to
prove that perfectly normal subparacompact spaces which are
locally connected and rim-compact are paracompact. In par­
ticular then, every perfectly normal, locally connected, and
rim compact Moore space is metrizable. This generalizes the
main theorem of [R,Z] and answers a question in [A,Z].

Recall that a space X is said to be subparacompact if
for any open cover \(\mathcal{U} \) of X there exists a sequence \(\{V(j)\}_{j \geq 1} \)
of open covers of X such that if \(x \in X \), then there is a \(j \geq 1 \)
so that \(\text{St}(x, V(j)) \subseteq U \) for some \(U \in \mathcal{U} \) (see [Bu]); X is per­
factly subparacompact if X is subparacompact and closed sub­
sets are \(G_\delta \)-sets in X. Also, X is rim-compact if for each
point \(x \) of X and each open set \(V \) containing \(x \), there is an
open set \(W \) with a compact boundary so that \(x \in W \subseteq V \).

We prove

Theorem 1. Every perfectly normal, locally connected,
rim-compact, and subparacompact space is paracompact.

This yields

Corollary. Every perfectly normal, locally connected
and rim-compact Moore space is metrizable.

The proof of Theorem 1 is based on the following
Theorem 2. The following conditions are equivalent for a topological space X:

1) X is perfectly subparacompact,

2) for each well-ordered open cover U of X there exists a sequence $\{V(j)\}_{j \geq 1}$ of open covers of X such that if $x \in X$, then there is a $j \geq 1$ such that $St(x, V(j))$ is contained in the first element of U that contains x,

3) for each well-ordered open cover $U = \{U_a\}_{a < \gamma}$ of X there exists a sequence $\{E(j)\}_{j \geq 1}$ of closed collections such that $E(j) = \{E_a(j)\}_{a < \gamma}$ is increasing and $\bigcup_{j \geq 1} E_a(j) = \bigcup_{a < \beta} U_a$ for $a < \gamma$,

4) for each well-ordered open cover $U = \{U_a\}_{a < \gamma}$ of X there exists a closed cover $J = \bigcup J(j)$ such that $J(j) = \{F_a(j)\}_{a < \gamma}$ is discrete and $F_a(j) \subseteq U_a \setminus \bigcup_{\beta < a} U_\beta$ for $a < \gamma$.

Theorem 2 was independently proved by H. Junnila.

In the first section, we shall prove Theorem 1 using the implication 1) \rightarrow 4) of Theorem 2. The second section contains a proof of Theorem 2. We end by giving characterizations of perfectly paracompact spaces analogous to those given in Theorem 2.

1. Proof of Theorem 1

Let X be a space satisfying the hypothesis of Theorem 1 and let U be an open cover of X. We shall prove that U has a σ-discrete open refinement.

Since X is rim-compact, we may assume that all elements of U have compact boundaries. Furthermore, we may assume
that \(U = \{ U_\alpha \}_{\alpha < \gamma} \) is well-ordered.

From the condition 4) of Theorem 2 it follows that there exists a closed refinement \(J = \bigcup_{j \geq 1} J(j) \) of \(U \) such that \(J(j) = \{ F_\alpha(j) \}_{\alpha < \gamma} \) is discrete and \(J_\alpha(j) \subseteq U_\alpha \setminus \bigcup_{\beta < \alpha} U_\beta \).

Since \(J \) refines \(U \), it is sufficient to prove that each \(J(j) \) can be expanded to a \(\sigma \)-discrete open family. This follows from the second of the next two lemmas.

Lemma 1. If a closed subset \(F \) of a regular rim-compact space \(X \) is contained in an open set \(U \), then there is an open set \(V \) with a compact boundary such that \(F \subseteq V \subseteq \overline{V} \subseteq U \).

Proof. Let \(W \) be a finite open cover of the boundary of \(U \) consisting of sets with compact boundaries and such that \(F \cap \overline{W} = \emptyset \). The set \(V = U \setminus \overline{W} \) has the desired properties.

Lemma 2. Let \(X \) be a perfectly normal locally connected and rim-compact space. If \(U = \{ U_\alpha \}_{\alpha < \gamma} \) is an open cover of \(X \), \(J = \{ F_\alpha \}_{\alpha < \gamma} \) is a discrete collection of closed subsets of \(X \) and, for \(\alpha < \gamma \)

(i) \(F_\alpha \subseteq U_\alpha \) and the boundary of \(U_\alpha \) is compact,

(ii) \(U_\alpha \cap (\bigcup_{\beta > \alpha} F_\beta) = \emptyset \),

then there exists an open collection \(W = \{ W_\alpha \}_{\alpha < \gamma} \) such that \(F_\alpha \subseteq W_\alpha \) and \(W \) is a countable union of discrete collections.

Proof. Since \(X \) is perfectly normal, we may choose a sequence \(\{ G_n \}_{n \geq 1} \) of open sets such that

(iii) \(\bigcup J = \bigcap_{n=1}^{\infty} G_n \) and \(G_{n+1} \subseteq G_n \) for \(n \geq 1 \).

Let \(W_{a,n} \) be the union of all components of \(G_n \) intersecting \(F_\alpha \). Since \(X \) is locally connected, each \(W_{a,n} \) is open. Moreover, from the definition of \(W_{a,n} \) it follows that for \(a_1 < a < \gamma \).
(iv) $W_{a_1,n} \cap W_{a,n} = \emptyset$ implies $W_{a_1,n} \cap F_{a} \neq \emptyset$.

We shall show that for each $\alpha < \gamma$ there exists an integer n such that

(v) $W_{a,n} \cap [\bigcup_{\beta > \alpha} F_{\beta}] = \emptyset$.

Assume that this is not the case and take the smallest α such that $W_{a,n} \cap [\bigcup_{\beta > \alpha} F_{\beta}] \neq \emptyset$ for all n.

By (i) and Lemma 1 there exists an open set V with a compact boundary such that $F_{\alpha} \subseteq V \subseteq \overline{V} \subseteq U_{\alpha}$. From (ii) it follows that the boundary C of V separates F_{α} from $\bigcup_{\beta > \alpha} F_{\beta}$. Since each $W_{a,n}$ intersects $\bigcup_{\beta > \alpha} F_{\beta}$ and is the union of a collection of connected sets intersecting F_{α}, the sets $W_{a,n} \cap C$ are non-void. From the compactness of C and the fact that $G + l \subseteq G$, we have $A = \bigcap_{n>1} \overline{W}_{a,n} \cap C \neq \emptyset$. By (iii) and $W_{a,n} \subseteq G$, $A \subseteq [\bigcup J] \cap C$ but $C \cap [\bigcup_{\beta > \alpha} F_{\beta}] = \emptyset$. Hence there exists an $\alpha_1 < \alpha$ and an $x \in F_{\alpha_1} \cap \bigcap_{n>1} \overline{W}_{a,n}$.

Each $W_{a,n}$ is closed in G and $x \in G$, therefore $x \in \overline{W}_{a,n}$ implies $x \in W_{a,n}$ and (iv) shows that α_1 does not satisfy (v) for any $n \geq 1$. This contradicts our choice of α.

For each $\alpha < \gamma$, let $n(\alpha)$ be the first integer satisfying (v).

From (iv), the family $\mathcal{W}' = \{W_{a,n} : n(\alpha) = n\}$ is pairwise disjoint. Since each $W_{a,n}$ is a sum of components of G, \mathcal{W}' is also discrete in G and, consequently, $\mathcal{W}' = \{G_{n+1} \cap W : W \in \mathcal{W}'\}$ is discrete in X. Thus $\mathcal{W} = \bigcup_{n \geq 1} \mathcal{W}_n$ is a σ-discrete open expansion of J.

2. Proof of Theorem 2

It is easy to observe that the conditions 2), 3), and 4) are equivalent and imply 1). We shall prove 1) \Rightarrow 2). In
the proof of Theorem 1 we use 1) \Rightarrow 4). The proof of 2) \Rightarrow 4) is a well known reasoning from [Bi]. H. Junnila gave a direct proof of 1) \Rightarrow 4).

Proof of 1) \Rightarrow 2). Let X be a perfectly subparacompact space and let $U = \{U_\alpha\}_{\alpha < \gamma}$ be a well-ordered open cover of X. Since X is perfect, we can find, for each $\alpha < \gamma$, a sequence $\{E_\alpha(j)\}_{j \in \mathbb{N}}$ of closed sets such that

1. $\bigcup_{j \in \mathbb{N}} E_\alpha(j) = \bigcup_{\beta < \alpha} U_\beta$

(Note, that in view of 3), we have to modify sets $E_\alpha(j)$ so that, for each $\alpha < \gamma$, $\{E_\alpha(j)\}_{j \in \mathbb{N}}$ forma an increasing collection.)

For each $m \geq 0$ let N^m denote the collection of all sequences of natural numbers of length m. If $t \in N^m$ and $i \in N$, then $(t,i) \in N^{m+1}$ denotes an extension of t by i. Put $T_u = \bigcup_{n \geq 0} N^{2n}$ and $T_v = \bigcup_{n \geq 0} N^{2n+1}$.

We will define, by induction on m, collections $\{U(t)\}_{t \in T_u}$ and $\{V(t)\}_{t \in T_v}$ of open covers of X such that $U(\emptyset) = U(\emptyset \in T_u$ is the only element of $N^0)$ and

1. if $t \in T_u$, then $\{V(t,k)\}_{k \in \mathbb{N}}$ is a sequence of open covers of X such that if $x \in X$, then there is a $k \in N$ such that $\text{St}(x,V(t,k))$ is a subset of some element of $U(t)$,

2. if $t \in T_v$ and $j \in N$, then $U(t,j) = \{U_\alpha(t,j)\}_{\alpha < \gamma}$ where

$$U_\alpha(t,j) = U_\alpha \setminus (E_\alpha(j) \cup \overline{A_\alpha(t)})$$

and

$$A_\alpha(t) = \{x \in X : \text{St}(x,V(t)) \subseteq \bigcup_{\beta < \alpha} U_\beta\}.$$

If $t \in T_v$ and $V(t)$ is an open cover of X, then the closure of the set $A_\alpha(t)$ defined in (iii) is contained in $\bigcup_{\beta < \alpha} U_\beta$, for all $\alpha < \gamma$. This, together with (i), shows that
U(t,j) defined in (iii) covers X for all j ∈ N.

If t ∈ T_u, then the collection {V(t,k)}_{k∈N} satisfying (ii) can be found by subparacompactness of X.

Therefore, starting with U(∅) = U, we can define the collections {U(t)}_{t∈T_u} and {V(t)}_{t∈T_v} of open covers of X satisfying (ii) and (iii).

From the fact that T_v is countable, it follows that it is sufficient to prove that if x ∈ X, then there exists a t ∈ T_v such that St(x,V(t)) is a subset of the first element V(t) that contains x.

Suppose that a point x ∈ X does not have the above property and let α_x < γ and t ∈ T_v be such that St(x,V(t)) ⊆ U_α and St(x,V(t)) ⊆ U_α implies α ≥ α_x.

By our assumption x ∈ ∪_{β<α_x} U_β and, by (i), there is a j ∈ N such that x ∈ E_{α_x} (j).

Consider U(t,j). From the definition of the sets U_α(t,j), it follows that x ∉ U_{α_x}(t,j) (by x ∈ E_{α_x} (j)) and x ∉ U_α(t,j) for α > α_x (by St(x,V(t)) ⊆ U_α). Therefore x ∉ ∪_{α>α_x} U_α(t,j).

Since (t,j) ∈ T_u, by (ii), there exists a k and a β < γ such that St(x,V(t,j,k)) ⊆ U_β (t,j). From x ∉ ∪_{α>α_x} U_α(t,j), we have β < α_x, but U_β(t,j) is a subset of U_β and this contradicts our choice of α_x.

3. Theorem 3

The following conditions are equivalent for a T_1 space X:

1) X is perfectly paracompact,

2) for each well-ordered open cover U of X there exists
a sequence \(\{V(j)\}_{j \geq 1} \) of open covers of \(X \) such that if \(x \in X \), then there exist a neighborhood \(O_x \) of \(x \) and \(j > 1 \) such that \(\text{St}(O_x, V(j)) \) is contained in the first element of \(\mathcal{U} \) that contains \(x \) (see [A]).

3) for each well-ordered open cover \(\mathcal{U} = \{U_a\}_{a < \gamma} \) of \(X \) there exists a sequence \(\{\xi(j)\}_{j \geq 1} \) of closed collections such that \(\xi(j) = \{E_a(j)\}_{a < \gamma} \) is increasing and
\[
\bigcup_{j \geq 1} \text{Int} E_a(j) = \bigcup_{j \geq 1} E_a(j) = \bigcup_{\beta < \alpha} U_\beta \text{ for } \alpha < \gamma.
\]

Theorem 3 can be proved in the same way as Theorem 2.

The implication 1) \(\Rightarrow \) 2)(3)) can be also obtained as a corollary to the implication 1) \(\Rightarrow \) 4) from Theorem 2 with the use of collectionwise normality of \(X \).

References

Auburn University
Auburn, AL 36830