IRREDUCIBLY ESSENTIAL MAPS FROM
INVERSE LIMITS

by

GARY A. FEUERBACHER
IRREDUCIBLY ESSENTIAL MAPS
FROM INVERSE LIMITS

Gary A. Feuerbacher

By a "continuum" is meant a compact, connected metric space. A "polyhedron" is the space of a finite simplicial complex. A "graph" is a connected, one-dimensional polyhedron. A map from a continuum X into a graph G is "essential" if it is not homotopic to a constant map; it is "irreducibly essential" if it is essential, but its restriction to any closed, proper subset of X is inessential.

If T is a continuum, then there is an inverse system \((P_i,F^{i+1}_i)_{i \in \mathbb{N}}\) with each \(P_i\) a polyhedron and each \(F^{i+1}_i\) a simplicial map, such that \(T = \lim_{\rightarrow}(P_i,F^{i+1}_i)\).

In what follows, suppose \(M\) is a one-dimensional continuum. Let \(M\) be represented as the inverse limit of the inverse system \((X_i,f^{i+1}_i)\), with each \(X_i\) a graph and each bonding map \(f^{i+1}_i\) a simplicial map from \(X_j\) onto \(X_i\). The \(i\)th projection map will be denoted \(\pi_i\).

Notation. In what follows, if \(Y\) is a metric space, \(d_Y\) will denote its metric. For the factor spaces of the inverse system \((X_i,f^{i+1}_i)\), \(d_j\) will be used in place of \(d_{X_j}\). Whenever each of \(f\) and \(g\) is a map from a compactum \(A\) into a compactum \(B\), \(f \equiv g\) will mean "\(f\) is homotopic to \(g\)"; in case \(t > 0\),
\(|f-g| < t\) means that the distance from \(f\) to \(g\) in the space \(B^A\) is less than \(t\), i.e.,
\[
\text{lub}(d_B(f(a),g(a))) < t.
\]
If \(Y \) is a metric space, and \(P \in Y \), and \(e > 0 \), then \(B(P, e) \) will denote the open ball with center \(P \) and radius \(e \).

The first section of this paper describes certain properties of the inverse system \((X_i, f_{i+1}^i)\) which are related to the existence of an essential map from \(M \) onto the unit circle \(S^1 \).

Lemma 1. If \(G \) is a graph and \(k \) is a map from \(M \) into \(G \), then there are a positive integer \(n \) and a map \(h \) from \(X_n \) into \(G \) such that for each \(i \geq 0 \), \(h \circ f_{n+1}^n \circ \pi_{n+i} \) is homotopic to \(k \).

Proof. Suppose \(G \) is a graph and \(k \) a map from \(M \) into \(G \).

By Theorem 0 of [1, §54, VIII, p. 379], the components of \(G^M \) correspond to its homotopy classes, and these components are closed-open. Let \(\delta > 0 \) be such that the open ball with center \(k \) and radius \(\delta \) is contained in the component of \(G^M \) that contains \(k \). We may regard \(G \) as \(\text{Lim}(Y_i, t_{i+1}^i) \) with \(Y_i = G \) and \(t_{i+1}^i = \text{Id} \) for each \(i \). By Lemma 1 of [2, p. 39], let \(m \) be a positive integer and \(W \) a map from \(X_m \) into \(G \) such that the diagram

\[
\begin{array}{ccc}
X_m & \xrightarrow{\pi_m} & M \\
\downarrow W & & \downarrow k \\
G & \xrightarrow{\text{Id}} & \text{Id}
\end{array}
\]

is \(\delta \)-commutative. Then \(|k - W \circ \pi_m| < \delta \). Also, since \(\pi_m = f_m^j \circ \pi_j \) for \(j \geq m \), we have

\[|k - W \circ f_m^j \circ \pi_j| < \delta \]

and thus \(k \approx W \circ f_m^j \circ \pi_j \) for each \(j \geq m \).

We have \(W \) and \(m \) as the needed \(h \) and \(n \), respectively.
Theorem 1. If G is a graph, k: M → G a map, n a positive integer, and h: Xn → G a map such that

\[h \circ f_{n+1}^n \circ \pi_{n+1} \cong k \]

for each i ≥ 0, then k is essential if and only if for each i ≥ 0, h \(\circ f_{n+1}^n \) is essential.

Proof. (This argument is a modification of the proof for Q9 in [3, p. 82].)

Let G, k, h, and n be as in the Lemma 1. Suppose k is essential. If i ∈ N and h \(\circ f_{n+1}^n \) is inessential, then

\[(h \circ f_{n+1}^n) \circ \pi_{n+1} \text{ is inessential, a contradiction.} \]

Now suppose h \(\circ f_{n+1}^n \) is essential for each i ∈ N. Suppose k is inessential. Let t = h \(\circ \pi_n \); by the Lemma 1, since t \cong k, t is inessential. Let \(\tilde{G} \) be the universal covering space of G with projection p. Since t is inessential, it may be lifted through \(\tilde{G} \); let t* be a lift of t, and let H = t*(M). Let \(\xi \) be an open cover of H by sets open in \(\tilde{G} \) such that if E ∈ \(\xi \), then p|E is a homeomorphism from E onto p(E) in G. The Lemma Q3 of [3, p. 80] may be modified to read: For any open cover U of M there exists a positive integer j > n and a finite cover \(v \) of \(X_j \) such that \{\pi_j^{-1}(V): V ∈ v\} refines U. The same argument as given by Case and Chamberlin is valid, substituting "X_i" for "B" (representing the figure "8," the union of two circles with a common point).

Let U be the collection of all inverse images under t* of elements of \(\xi \); U = \{t*^{-1}(E): E ∈ \(\xi \)\}. By Q3, let j > n and \(v \) a finite cover of \(X_j \) such that \{\pi_j^{-1}(V): V ∈ v\} refines U.

Let c be the relation, c ⊂ \(X_j × \tilde{G} \), to which the ordered pair (a,b) belongs if and only if there is a point Z ∈ \(\pi_j^{-1}(a) \)
such that \(b = t^*(Z) \).

Now, \(c \) is a function. For: let \((a,b)\) and \((a,b')\) be in \(c \). Let \(b = t^*(Z) \) and \(b' = t^*(Z') \), with \(Z, Z' \in \pi_j^{-1}(a) \). Then
t(\(Z \)) = h(\(\pi_n(Z) \)) = h(f_n^j(\(\pi_j(Z) \))) = h(f_n^j(\(\pi_j(Z') \))) = t(\(Z' \)), hence
\(p \ t^*(Z) = p \ t^*(Z') \). Let \(a \in \Omega \in \nu \); then since \(\{ \pi_j^{-1}(V) : V \in \nu \} \) refines \(U \), there is \(E \in \xi \) such that \(t^*(\pi_j^{-1}(a)) \subseteq E \). But \(p \) is one-to-one on \(E \); hence since \(t^*(Z), t^*(Z') \in E \), and \(p \ t^*(Z) = p \ t^*(Z') \), \(b' = t^*(Z') = t^*(Z) = b \), and \(c \) is single valued.

To show continuity, we note that for \(x \in V \in \nu \), and
\(\pi_j(Z) = x \), \(p \ c(x) = p \ t^*(Z) = t(Z) = h(f_n^j(\pi_j(Z))) = h(f_n^j(x)) \), and \(c(x) = (p|E)^{-1}(h(f_n^j(x))) \) with \(E \) an element of \(\xi \) such that \(t^*(\pi_j^{-1}(V)) \subseteq E \). Since \(h \circ f_n^j \) and \((p|E)^{-1} \) are continuous on \(V \), so is \(c \). Since \(c \) is continuous on each member of \(\nu \), \(c \) is continuous on \(X_j \).

Also for any \(x \) in \(X_j \), \(p \ c(x) = h \circ f_n^j(x) \), i.e., \(c \) is a lift of \(h \circ f_n^j \) through \(\tilde{G} \). Since \(G \) is a graph, and \(\tilde{G} \) is simply connected, \(c(X_j) \) is contractible, and \(c \) is inessential. Therefore, \(h \circ f_n^j \) is inessential, a contradiction.

Proposition. Consider \((S^1,d)\) as a metric space. In what follows, let \(\theta > 0 \) be such that any two points \(a \) and \(b \) of \(S^1 \), with \(d(a,b) < \theta \), are non-antipodal. If \(H \) is a compactum, and each of \(f \) and \(g \) is a map from \(H \) into \(S^1 \), with \(|f - g| < \theta \), then \(f \equiv g \) \([4, \text{p. 85}]\).

Definition 1. Suppose \(j \) is a non-negative integer.

Suppose \(C \) is an infinite sequence of simple closed curves. If, for each \(i \geq 1 \),

1. \(C_i \subseteq X_{j+i} \), and
2. \(C_i \subseteq f_n^{j+i+1}(C_{i+1}) \),
and if (3) there exists a map \(h: X_{j+1} \to S^1 \) such that, for each positive integer \(p \), \(h \circ f_{j+1}^{j+p} | C_p \) is essential, then \(C \) will be called an \(M \)-cycle. We will say that \(C \) is associated with the map \(h \).

If, in addition,

(4) there is a map \(k: M \to S^1 \) such that \(|h \circ \pi_{j+1} - k| < \theta/2 \), then \(C \) will be called an \(M \)-cycle on which \(k \) is essential. A finite (or infinite) sequence of simple closed curves having properties (1), (2), (3), and (4) will be said to have property \(p_4 \).

The next result relates the concept of an \(M \)-cycle to the notion of a \(K \)-cycle, with \(K \) being a proper subcontinuum of \(M \); in this case, \(K \) is also an inverse limit, i.e.,

\[
K = \operatorname{Lim}(Y_i, g_i^{i+1}) = \operatorname{Lim}(\pi_i(K), f_i^{i+1} | \pi_{i+1}(K)).
\]

Lemma 2. If \(H \) is a subcontinuum of \(M \), \(j \) is a non-negative integer, and \(C \) is a sequence of simple closed curves satisfying, for each \(i \), (1) \(C_i \subset \pi_{j+i}(H) \), (2) \(C_i \subset f_{j+1}^{j+i+1}(C_{i+1}) \), and \(k \) is a map from \(M \) into \(S^1 \), and \(h \) is a map from \(X_{j+1} \) into \(S^1 \) such that \(|h \circ \pi_{j+1} - k| < \theta/2 \), then \(C \) is an \(M \)-cycle on which \(k \) is essential if and only if \(C \) is an \(H \)-cycle on which \(k | H \) is essential.

Proof. Suppose \(H, j, C, k, \) and \(h \) are as in the hypothesis. Suppose \(C \) is an \(M \)-cycle on which \(k \) is essential. By definition 1, let \(g \) be a map, \(g: X_{j+1} \to S^1 \), such that

\[
|g \circ \pi_{j+1} - k| < \theta/2,
\]

and, for each \(i \), \(g \circ f_{j+1}^{j+i} \) is essential on \(C_i \). \(|g \circ \pi_{j+1} | H - k | H| < \theta/2 \). Also, \(H = \operatorname{Lim}(\pi_i(H), f_i^{i+1} | \pi_{i+1}(H)) \). We have \(g \circ \pi_{j+i} | H = (g | \pi_{j+1}(H)) \circ \pi_{j+1} | H, \)
and C is an H-cycle on which k | H is essential.

Now suppose C is an H-cycle on which k | H is essential. By definition, let t be a map, t: \(\pi_{j+1}(H) \to S^1 \), such that

\[
|t \circ \pi_{j+1}|H - k|H| < \theta/2,
\]

and, for each i, \(t \circ f_{j+1}^i|C_i \) is essential. We have

\[
|h \circ \pi_{j+1}|H - k|H| < \theta/2,
\]

whence

\[
|t \circ \pi_{j+1}|H - h \circ \pi_{j+1}|H| < \theta.
\]

This implies that

\[
|t - h|\pi_{j+1}(H)| < \theta, \quad \text{and, for each } i, \text{ since}
\]

\[
f_{j+1}^i(C_i) \subset \pi_{j+1}(H), \quad |t \circ f_{j+1}^i|C_i - h \circ f_{j+1}^i|C_i| < \theta.
\]

By the proposition, \(t \circ f_{j+1}^i|C_i \equiv h \circ f_{j+1}^i|C_i \), and \(h \circ f_{j+1}^i|C_i \) is essential. Hence, C is an M-cycle on which k is essential.

The next result provides a characterization of essential maps from M into \(S^1 \) in terms of M-cycles.

Theorem 2. If k is a map from M into \(S^1 \), n is a positive integer, and h: \(X_{n+1} \to S^1 \) is a map such that \(|h \circ \pi_{n+1} - k| < \theta/2 \), then k is essential if and only if there is an M-cycle C, associated with h, on which k is essential.

Proof. Let k be a map from M into \(S^1 \). Let n be a positive integer and h: \(X_{n+1} \to S^1 \) a map such that \(|h \circ \pi_{n+1} - k| < \theta/2 \).

Suppose k is essential. By Theorem 1, \(h \circ f_{n+1}^j \) is essential for each \(j \geq n+1 \). Since \(X_{n+2} \) is a locally connected continuum, by Theorem 4 of [1, §56, X, p. 430], there is a s.c.c. D contained in \(X_{n+2} \) such that \(h \circ f_{n+1}^{n+2}|D \) is essential. Let D denote such a s.c.c. Then \(h|f_{n+1}^{n+2}(D) \) is also essential. Since the continuous image of a locally connected continuum is locally connected, there is a s.c.c. \(E = f_{n+1}^{n+2}(D) \) such that
h|E is essential. The sequence (E,D) has property p4. By a similar argument, for each integer \(j > 1 \), there is a s.c.c. \(H \) lying in \(X_{n+j} \) such that \(h \circ f_{n+1}^{n+j}|H \) is essential, and furthermore, there is a s.c.c. \(K \) lying in \(f_{n+1}^{n+j-1}(H) \) such that \(h \circ f_{n+1}^{n+j-1}|K \) is essential. Now, for each positive integer \(i \), \(X_{n+i} \) is a graph, and thus \(X_{n+i} \) contains only finitely many s.c.c.s. Therefore, for each positive integer \(j \), the set of all s.c.c.s \(K \) lying in \(X_{n+j} \) such that \(f_{n+1}^{n+j}|K \) is essential is finite. Using an argument analogous to that which shows the existence of an inverse limit on a sequence of finite spaces, each of which has the discrete topology, one deduces the existence of an infinite sequence of s.c.c.s having property p4 (e.g., Theorem 114 of [6]). Hence there is an M-cycle on which \(k \) is essential.

Now suppose \(C \) is an M-cycle associated with \(h \) on which \(k \) is essential. Let \(j \) be a positive integer. Since \(h \circ f_{n+1}^{n+j}|C_j \) is essential, so also is \(h \circ f_{n+1}^{n+j} \). By Theorem 1, \(k \) is essential.

The second section of this paper describes certain irreducibility properties that the inverse system \((X_i,f_i^{i+1})\) may satisfy. These properties will be related to the notion of an "irreducibly essential" map in the third section.

Definition 2. Suppose \(L \) is a compact subset of \(M \), \(n \) is a positive integer, and \(C \) is an M-cycle, with \(C_\perp \subset X_{n+1} \). Then \(L \) is said to be "projection-irreducible about the terms of \(C \)" (briefly, "\(L \) is irreducible with respect to \(C \)") provided that

1. for each \(i \), \(C_i \subset \pi_{n+i}(L) \), and
(2) for each compact, proper subset T of L, there exists j such that $C_j \notin \pi_{n+j}(T)$.

Theorem 3. If n is a positive integer, C is an M-cycle, $C_1 \subset X_{n+1}$, then there is a compact subset of M which is irreducible with respect to C. Furthermore, each such point set is connected.

Proof. Let n be a positive integer, C an M-cycle, and $C_1 \subset X_{n+1}$. Let H be the set of all compact subsets K of M such that, for each i, $C_i \subset \pi_{n+i}(K)$. Let H be partially ordered by set inclusion: "$A \preceq B$" if and only if $A \subset B$. Let L be a maximal, totally ordered subset of H. Let Y be the common part of all elements of L.

Now, Y is a member of L. For: Let j be a positive integer, and P a point of C_j. Let, for each K in L, $g_K = \pi_{n+j}^{-1}(K)$. Suppose $A, B \in L$, and $A \preceq B$. Then $g_A = g_B|A$, whence $g_A^{-1}(P) \subset g_B^{-1}(P)$. We have $Q = \{g_K^{-1}(P): K \in L\}$ totally ordered by set inclusion, with $g_A^{-1}(P) \subset g_B^{-1}(P)$ whenever $A \preceq B$. Also, each member of Q is a compact point set. Then $\bigcap_{K \in L} g_K^{-1}(P)$ is a compact point set; let R denote it. Since $g_K^{-1}(P) \subset K$, for each K,

$$R \subset Y.$$

We have $C_j = \pi_{n+j}(Y)$ for each j, i.e., $Y \subset H$. Since $Y \subset K$ for each K in L, and L is maximal, $Y \subset L$. Also, since L is maximal, no proper compact subset of Y is in H whence Y is irreducible with respect to C.

Suppose Z is compact and Z is irreducible with respect to C. Suppose Z is not connected. Let $Z = A \cup B$, the sum of 2 mutually exclusive, closed point sets. Let j be a positive
integer such that, for each $i \geq 0$, $\pi_{n+j+i}(A)$ does not intersect $\pi_{n+j+i}(B)$.

Since C_j is connected, either $C_j \subset \pi_{n+j}(A)$ or $C_j \subset \pi_{n+j}(B)$; assume $C_j \subset \pi_{n+j}(A)$. Let i be a positive integer. Either $C_{j+i} \subset \pi_{n+j+i}(A)$ or $C_{j+i} \subset \pi_{n+j+i}(B)$; suppose $C_{j+i} \subset \pi_{n+j+i}(B)$. Then $f_{n+j+i}(C_{j+i}) \subset \pi_{n+j}(B)$. But $C_j \subset f_{n+j+i}(C_{j+i})$, a contradiction. We have $C_i \subset \pi_{n+i}(A)$ for each i, and A is a compact, proper subset of Z, whence Z is not irreducible with respect to C, a contradiction.

The next result asserts that we may assume that all M-cycles on which k is essential have their first term in the same factor space and are associated with the same map.

Lemma 3. Suppose k is a map from M into S^1, and D is an M-cycle on which k is essential. Let m and n be non-negative integers, $m < n$, and s and t be maps from X_{m+1} and X_{n+1} respectively into S^1, with D associated with t, and s such that $|s \circ \pi_{m+1} - k| < \theta/2$. Then there is an M-cycle E associated with s such that $|s \circ \pi_{n+1} - t| < \theta$.

Proof. Let k be a map from M into S^1, and D be an M-cycle on which k is essential. Let $m < n$, s and t be maps from X_{m+1} and X_{n+1}, respectively, into S^1. Let D be associated with t and let $|s \circ \pi_{m+1} - k| < \theta/2$. We have $|t \circ \pi_{n+1} - k| < \theta/2$, whence
\[|s \circ \pi_{m+1} - t \circ \pi_{n+1}| = |s \circ f^{n+1}_{m+1} \circ \pi_{n+1} - t \circ \pi_{n+1}| < \delta, \]

and \[|s \circ f^{n+1}_{m+1} - t| < \delta. \]

Since \(t \) is essential, so are \(s, f^{m+2}, f^{m+3}, \ldots, f^{n+1}_n \). The \(f^{n+1}_n \)-image of \(D_1 \) is a locally connected subcontinuum of \(X_n \).

Since \(s \circ f^{n}_{m+1} | f^{n+1}_n(D_1) \) is an essential map onto \(S^1 \), by Theorem 4 of [1, §56, X, p. 430], there is a simple closed curve \(L \) lying in \(f^{n+1}_n(D_1) \) such that \(s \circ f^{n}_{m+1} | L \) is essential; let \(H_1 \) denote such a s.c.c. Similarly, there is a s.c.c. \(K \) lying in \(f^{n-1}_n \)-image of \(H_1 \) such that \(s \circ f^{n-1}_{m+1} | K \) is essential; let \(H_2 \) denote such a s.c.c. Proceeding by induction, there is a sequence \((H_1, H_2, \ldots, H_{n-m}) \) of simple closed curves, with \(H_i \subset X_{n+1-i}, H_{i+1} \subset f^{n+1-i}_{n-i}(H_i) \), and \(s \circ f^{n+1-i}_{m+1} | H_i \) essential for each \(i \). Let \(E \) denote the following sequence:

\[
E_j = \begin{cases}
H_{n+1-m-j} & \text{if } 1 \leq j \leq n-m \\
D_{j-n+m} & \text{if } n-m < j
\end{cases}
\]

Then \(E \) is an M-cycle associated with \(s \) on which \(k \) is essential.

In the last section we prove the main theorem, which characterizes irreducibly essential maps from \(M \) onto \(S^1 \) in terms of M-cycles and the irreducibility condition discussed in the second section. The final result uses the main theorem to examine hereditary unicoherence in terms of inverse limit properties.

From definitions 1 and 2, and from Theorem 2, we have

Theorem 4. If \(k \) is a map from \(M \) onto \(S^1 \), then \(k \) is irreducibly essential if and only if (1) there is an M-cycle on which \(k \) is essential and (2) if \(W \) is an M-cycle on which \(k \) is essential, then \(M \) is irreducible with respect to \(W \).
Proof. Condition (1) is necessary and sufficient for \(k \) to be essential. For \(k \) to be inessential on every compact proper subset of \(M \), it is necessary and sufficient that \(k \) be inessential on every proper subcontinuum of \(M \). Suppose \(k \) is irreducibly essential. Let \(W \) be an \(M \)-cycle on which \(k \) is essential. Let \(H \) be a proper subcontinuum of \(M \). Then \(k|H \) is inessential. By Theorem 2, there is no \(H \)-cycle on which \(k|H \) is essential. Let \(j \) be a non-negative integer such that \(W \subseteq X_{j+1} \). By Lemma 2, if, for each \(i \), \(W_i \subseteq \pi_{j+1}(H) \), then \(W \) is a \(H \)-cycle on which \(k|H \) is essential, a contradiction. Hence \(M \) is irreducible with respect to \(W \).

Now suppose condition (2) holds. Let \(L \) be a proper subcontinuum of \(M \). Suppose \(n \) is a non-negative integer, and \(h \) is a map, \(h: X_{n+1} \to S^1 \), such that \(|k - h \circ \pi_{n+1}| < \theta/2 \). Suppose \(k|L \) is essential. By Theorem 2, let \(C \) be an \(L \)-cycle on which \(k|L \) is essential, with \(C \subseteq \pi_{n+1}(L) \). By Lemma 2, \(C \) is an \(M \)-cycle on which \(k \) is essential. But \(M \) is irreducible with respect to \(C \), a contradiction. Thus \(k|L \) is inessential, whence \(k \) is irreducibly essential.

Theorem 5. If \(n \) is a positive integer, and \(C \) is an \(M \)-cycle, \(C \subseteq X_{n+1} \), then \(M \) is irreducible with respect to \(C \) if and only if for each positive integer \(s \), and each number \(e > 0 \), there is a positive integer \(t > s \) such that, if \(x \in X_{n+s} \), then \(d_{n+s}(x,f_{n+s}(C_t)) < e \).

Proof. Let \(n \) be a positive integer, \(C \) an \(M \)-cycle, and \(C \subseteq X_{n+1} \). Suppose \(M \) is irreducible with respect to \(C \). Let \(s \) be a positive integer and \(e > 0 \). Suppose, by way of contradiction, that for every \(t > s \) there is a point \(x \in X_{n+s} \)
such that $d_{n+s}(x, f_{n+s}^n(C)) \geq e$.

Let W be the following sequence: if i is a positive integer, then

$$W_i = \{x \in X_{n+s}: d_{n+s}(x, f_{n+s}^{n+i}(C_{s+i})) \geq e\}.$$

Now, for each i, W_i is closed in X_{n+s}. Also since

$$C_{s+i} \subseteq f_{n+s}^{n+i+1}(C_{s+i+1}) \text{, and}$$
$$f_{n+s}^{n+i}(C_{s+i}) \subseteq f_{n+s}^{n+i+1}(C_{s+i+1}),$$

for each i, we have $W_{i+1} \subseteq W_i$. Since each term of W is compact, $\bigcap W_i$ is a point set; denote it by Y. If $x \in Y$, then for every i,

$$d_{n+s}(x, f_{n+s}^{n+i}(C_{s+i})) \geq e.$$

Let $q \in Y$, and let 0 be the set of all points x such that $d_{n+s}(x, q) < e/2$. By the triangle inequality, if $x \in 0$, then $d_{n+s}(x, f_{n+s}^{n+i}(C_{s+i})) > e/2$ for every i.

Now, $M - \pi_{n+s}^{-1}(0)$ is a closed, proper subset of M; denote it by M'. Let j be a positive integer. Then

$$f_{n+s}^{n+j} \circ \pi_{n+s+j} = \pi_{n+s},$$
$$f_{n+s}^{n+s+j}(C_{s+j}) \subseteq X_{n+s} - 0 = \pi_{n+s}(M').$$

Suppose $C_{s+j} \neq \pi_{n+s+j}(M')$. Let $p \in C_{s+j}$, but $p \notin \pi_{n+s+j}(M')$. Then there is a point p' in M such that $\pi_{n+s+j}(p') = p$, but $p' \notin M'$. Hence $p' \in \pi_{n+s}^{-1}(0)$. We have $\pi_{n+s}(p') \in 0$. Also,

$$f_{n+s}^{n+s+j}(\pi_{n+s+j}(p')) \in 0, \text{ and } f_{n+s}^{n+s+j}(p) \in 0.$$ But $f_{n+s}^{n+s+j}(C_{s+j}) \subseteq X_{n+s} - 0$, a contradiction. Thus $C_{s+j} \subseteq \pi_{n+s+j}(M')$. Also, for $1 \leq p \leq s$, $C_p \subseteq f_{n+p}^{n+s}(C_p)$, and $C_s \subseteq \pi_{n+s}(M')$, whence $C_p \subseteq \pi_{n+p}(M') = f_{n+p}^{n+s} \circ \pi_{n+s}(M')$. Hence $C_i \subseteq \pi_{n+i}(M')$ for each i, and M is not irreducible with respect to C, a contradiction.
Now suppose that for each positive integer s and each $e > 0$, there is an integer $t > s$ such that if $x \in X_{n+s}$, then $d_{n+s}(x, f_{n+s}^t(C_t)) < e$. Suppose M' is a compact, proper subset of M. Let $P \in M - M'$. Let O be a sub-basis element of M, and $P \in O$, and $O \cap M' = \emptyset$. Let q be a positive integer, L an open set in X_q, and $O = \pi_q^{-1}(L)$. Then $(f_q^{n+q})^{-1}(L)$ is open in X_{n+q}, and $P_{n+q} \in \pi_{n+q}(O) = (f_q^{n+q})^{-1}(L)$, with $\pi_{n+q}(O) \cap \pi_{n+q}(M') = \emptyset$. Let $e > 0$ such that $B(P_{n+q}, e) \subset \pi_{n+q}(O)$. Let t be an integer, $t > q$, such that $d_{n+q}^t(P_{n+q}, f_{n+q}^t(C_t)) < e$.

If $C_t \subset \pi_{n+t}(M')$, then $f_{n+q}^t(C_t) \subset \pi_{n+q}(M')$, contradicting $\pi_{n+q}(M') \cap \pi_{n+q}(O) = \emptyset$. Thus M is irreducible with respect to C.

From Theorems 4 and 5, we have immediately

Theorem 6. If k is a map from M onto S^1, then k is irreducibly essential if and only if (1) there is an M-cycle on which k is essential, and (2) if n is a positive integer, and C is an M-cycle on which k is essential, with $C_1 \subset X_{n+1}$, then for each positive integer s, and each number $e > 0$, there is an integer $t > s$ such that, if $x \in X_{n+s}$, then $d_{n+s}(x, f_{n+s}^t(C_t)) < e$.

Theorem 7. Suppose H is a continuum. Then H is hereditarily unicoherent if and only if there is no decomposable subcontinuum H' of H which is the domain space of an irreducibly essential map onto S^1.

Proof. Suppose H is hereditarily unicoherent. Let H' be a subcontinuum of H, and g an irreducibly essential map from H' onto S^1. Suppose H' is decomposable. Let H' be the
sum of two proper subcontinua A and B. Then $g|A$ and $g|B$ are inessential. But H' is unicoherent; thus $A \cap B$ is connected, and g is inessential, a contradiction.

Now suppose each subcontinuum of H which is the initial set of an irreducibly essential map onto the circle is indecomposable. Suppose H is not hereditarily unicoherent. Let K be a subcontinuum of H, and $K = A \cup B$, the sum of two proper subcontinua, such that $A \cap B$ is not connected. Let $A \cap B = C \cup D$, the sum of two mutually exclusive closed sets. Let A' be a subcontinuum of A irreducible between C and D. Let B' be a subcontinuum of B irreducible between $A' \cap C$ and $A' \cap D$. By Urysohn's lemma, let f be a map from A' onto the interval $[0,\frac{1}{2}]$ such that $f(A' \cap C) = 0$, $f(A' \cap D) = \frac{1}{2}$, and the f-image of every other point of A' is in the open interval $(0,\frac{1}{2})$. Similarly, let g be a map from B' onto $[\frac{1}{2},1]$ such that $g(B' \cap A' \cap D) = \frac{1}{2}$, $g(B' \cap A' \cap C) = 1$, and the g-image of every other point of B' is in the open interval $(\frac{1}{2},1)$. Letting \emptyset denote the wrapping function from the real line into the plane, $\emptyset(x) = e^{2\pi i x}$, we define a function h from $A' \cup B'$ into S^1, as follows:

$$h(x) = \begin{cases}
\emptyset(f(x)) & \text{if } x \in A' \\
\emptyset(g(x)) & \text{if } x \in B'
\end{cases}$$

Then h is an irreducibly essential map, whence $A' \cup B'$ is indecomposable, a contradiction.

Using the inverse limit characterization of indecomposability due to D. P. Kuykendall [5], we obtain the following result.

Corollary. Suppose M is the inverse limit of an inverse
system of one-dimensional polyhedra, \(M = \lim_{+}(X_i, f^{i+1}_i, \pi_i) \).

Then \(M \) is hereditarily unicoherent if and only if the following condition holds: if \(H \) is a subcontinuum of \(M \),

\[
H = \lim_{+}(\pi_1(H), f^{i+1}_1|\pi_1(H), \pi_1|H) = \lim(Y_i, g^{i+1}_i, \sigma_i),
\]

\(n \) is a non-negative integer, \(t \) is a map from \(Y_{n+1} \) into \(S^1 \), and \((1) \) there is an \(H \)-cycle \(C \) associated with \(t \), and \((2) \) \(H \) is irreducible with respect to \(D \) for each \(H \)-cycle \(D \) associated with \(t \), then \(H \) is indecomposable, i.e., if \(m \) is a positive integer, and \(e > 0 \), then there are a positive integer \(W \) and three points of \(Y_W \) such that if \(P \) and \(Q \) are two of them, and \(K \) is a subcontinuum of \(Y_W \) containing \(P \) and \(Q \), then \(d_m(x, g^W_m(K)) < e \), for each point \(x \) of \(Y_m \).

References

Texaco

Bellaire, Texas 77401