A NOTE ON THE PRODUCT OF
FRECHET SPACES

by

GARY GRUENHAGE
A NOTE ON THE PRODUCT OF FRECHET SPACES

Gary Gruenhage

1. Introduction

A space X is said to be a Fréchet space if whenever $x \in \mathbb{A}$, there exist $x_n \in A$, $n = 1, 2, \ldots$, with $x_n \to x$. In general, Fréchet spaces behave very badly with respect to products. In fact, if X and Y are non-discrete Fréchet spaces and $X \times Y$ is Fréchet, then a theorem of Michael [5] implies that X and Y must have the following stronger property: if $x \in \bigcap_{n=1}^{\infty} A_n$, where $A_1 \supseteq A_2 \supseteq \cdots$, then there exists $x_n \in A_n$ with $x_n \to x$. Spaces satisfying this property are called countably bi-sequential spaces. We should add that even if X and Y are countably bi-sequential, this does not guarantee that $X \times Y$ is Fréchet (see [4] or [6]).

In a letter to the author, F. Galvin asked the following question: if X_0, X_1, X_2, \ldots are such that $\prod_{i \leq n} X_i$ is Fréchet (equivalently, countably bi-sequential) for all $n \in \omega$, must $\prod_{i \in \omega} X_i$ be Fréchet (equivalently, countably bi-sequential)? Y. Tanaka [8, Problem 2.6] has asked the same question. In this paper, we construct, assuming Martin's Axiom (MA), a Fréchet space X such that X^n is Fréchet for all $n \in \omega$, but X^ω is not Fréchet. The space X is countable, and has only one non-isolated point.

Before proceeding with the construction of the example, we would like to mention some related problems. Bi-sequential spaces [5] are closed under countable products, so the space X we construct is a countable countably bi-sequential space.
which is not bi-sequential. Others (e.g., Galvin [2], Malyhin [4], Olson [6]) have constructed such spaces assuming various axioms of set theory, but no real example has been found. (There are uncountable real examples, e.g., an uncountable ℓ-product of the unit interval.) A space X is called a w-space if whenever $x \in \tilde{A}_n$, $n = 1, 2, \ldots$, there exists $x_n \in A_n$ with $x_n \to x$. These spaces were introduced by the author in [3], and defined in terms of an infinite game, but this characterization, due to P. L. Sharma [7], is much better. Clearly, every w-space is countably bi-sequential, and the difference between the two classes of spaces does not, on the surface, look very large. But the following question, also asked by Galvin, remains open: if X^n is a w-space for all $n \in \omega$, must X^ω be a w-space (or a Fréchet space)? A counterexample to this question would be about as far as one could go in this direction. Call X a c^*-space (terminology due to Sharma) if X has countable tightness and every countable subset of X is first countable. It is easy to see that if X^n is a c^*-space for every $n \in \omega$, then X is a c^*-space. No real example of a space which is a w-space but not a c^*-space has been found. However, Galvin [1] has constructed such spaces assuming MA.

2. Construction of the Example

Unless otherwise stated, we use the letters m, n, and k to denote natural numbers. The example is based on a construction, by induction on the ordinals less than the continuum c, of a certain collection of almost-disjoint subsets of ω. To get us past an uncountable stage $\alpha < c$, we need the
Lemma (MA). Let \(\{ I_\alpha \}_{\alpha < \kappa} \), \(\kappa < \mathfrak{c} \), be a collection of infinite almost-disjoint subsets of \(\omega \). Suppose \(A \subset \omega^n \times \omega^m \), and \(\{\alpha(0), \alpha(1), \ldots, \alpha(m-1)\} \subset \kappa \) are such that

(1) \(A \subset \omega^n \times \prod_{j<m} I_\alpha(j) \)

(2) \(A \cap \{ (\prod_{i<n} \omega \setminus E(i)) \times (\prod_{j<m} I_\alpha(j) \setminus \{F(j)\}) \} \neq \emptyset \) whenever \(E(i) \) is a finite union of the \(I_\alpha \)'s, together with a finite subset of \(\omega \), and \(F(j) \) is a finite subset of \(\omega \). Then there is a sequence \(\hat{x}_0, \hat{x}_1, \ldots \) of elements of \(A \) such that

(i) \(C(\hat{x}_i) \cap C(\hat{x}_j) = \emptyset \) whenever \(i \neq j \), where \(C(\hat{x}) \) is the set of coordinates of \(\hat{x} \);

(ii) if \(\alpha < \kappa \), then \(I_\alpha \cap \{ \pi_i(\hat{x}_j) : i < n, j \in \omega \} \) is finite, where \(\pi_i \) is the projection on the \(i \)th coordinate.

Proof. Let \(P = \{ (f,F) : f \subset A, F \subset \kappa, \text{with } f \text{ and } F \) finite \}. Define \((f,F) < (g,G) \) if and only if

(a) \(f \subset g \) and \(F \subset G \);

(b) if \(\hat{y} \in g \setminus f \), then \(\hat{y} \) is an element of \(A \cap \{ (\prod_{i<n} \omega \setminus \bigcup_{\alpha \in F} I_\alpha) \times (\prod_{j<m} I_\alpha(j) \setminus \bigcup_{\hat{x} \in f} C(\hat{x})) \} \).

So defined, \((P,<) \) satisfies the CCC because there are only countably many possible \(f \)'s, and \((f,F) \) and \((f,G) \) are bounded by \((f,F \cup G) \). For each \(\alpha < \kappa \), and \(i \in \omega \) let \(X_{\alpha,i} = \{ (f,F) \in P : |f| > i \text{ and } \alpha \in F \} \). \(X_{\alpha,i} \) is a dense open set in \((P,<) \), so by MA, there is a compatible family \(\{ (f_{\alpha,i}, F_{\alpha,i}) \in X_{\alpha,i} : \alpha < \kappa, i \in \omega \} \). Pick \(\hat{x}_0 \in f_{\alpha(0),i(0)} \). If \(\hat{x}_0, \hat{x}_1, \ldots, \hat{x}_{k-1} \) have been chosen, pick \(\hat{x}_k \in f_{\alpha(k),i(k) \setminus \bigcup_{j<k} f_{\alpha(j),i(j)}} \). We claim that \(\hat{x}_0, \hat{x}_1, \ldots \) is the desired sequence. If \(j < k \), then since \(\hat{x}_k \in f_{\alpha(k),i(k) \setminus f_{\alpha(j),i(j)}} \), and by the compatibility,
the conclusion of property (b) is satisfied with $\hat{y} = \hat{x}_k$ and $f = f_{a(j)}, i(j)$. Hence $C(\hat{x}_j) \cap C(\hat{x}_k) = \emptyset$, and so property (i) of the conclusion of the lemma is satisfied. Now let $a < k$. If $\hat{x}_k \notin f_{a',1}$, then the conclusion of (b) is satisfied with $\hat{y} = \hat{x}_k$ and $F = f_{a',1}$. Since $a \in f_{a',1}$, the first n coordinates of \hat{x}_k miss I_a. Thus (ii) is satisfied, and this completes the proof.

Theorem (MA). There is a countable Fréchet space X such that X^n is Fréchet for all $n \in \omega$, but X^ω is not Fréchet.

Proof. We will construct a countable space X_k for each $k \in \omega$, so that $\prod_{k<n} X_k$ is Fréchet for all $n \in \omega$, but $\prod_{k \in \omega} X_k$ is not Fréchet. We can then take X to be the free union of the X_k's.

To this end, we will construct a sequence $\{\mathcal{S}_n\}_{n \in \omega}$ of collections of infinite subsets of ω such that $\bigcup_{n \in \omega} \mathcal{S}_n$ is a maximal almost-disjoint collection. We then take X_k to be the space $\omega \cup \{\omega\}$ with the points of ω isolated, and a neighborhood of ω is $\omega \cup \{\omega\}$ minus a finite union of elements of $\bigcup_{n \in \omega} \mathcal{S}_j$. It is easy to see that, in the space $\prod_{k \in \omega} X_k$, the point $(\omega, \omega, \cdots) \in \text{Cl}\{(n, n, \cdots) : n \in \omega\}$, but no sequence of the type $\{(n_k, n_k, \cdots) : k \in \omega\}$ converges to (ω, ω, \cdots). Thus $\prod_{k \in \omega} X_k$ is not a Fréchet space.

We need to construct the \mathcal{S}_k's so that every finite product of the X_k's is Fréchet. First construct $I_k(n), n \in \omega$, so that $\{I_k(n) : n \in \omega, k \in \omega\}$ is an almost-disjoint collection of infinite subsets of ω, with the additional property that for each $k \in \omega$ and finite subset F of ω, there is $n \in \omega$ with $F \subset I_k(n)$.
For each $n \in \omega$, let $A_n = P(\omega^n)$, and let $A = \bigcup_{n \in \omega} A_n$. Let $A = \{A_\alpha : \alpha < c\}$ so that each element of A appears c times in the well-ordering. For each $n \in \omega$, define $\beta(n) = n$. Now suppose $I_n(a)$ and $\beta(n)$ have been defined for all $\alpha < \kappa$, where $\omega \leq \kappa < c$, and $k \in \omega$. Let $\mathcal{G}(\kappa) = \{I_n(\alpha) : \alpha < \kappa, k \in \omega\}$.

Let $\beta(\kappa)$ be the least ordinal β such that $\beta > \beta(\alpha)$ whenever $\omega \leq \alpha < \kappa$, and such that $A_\beta \subset \omega^n$ satisfies the following two properties:

(i) there are a set $J \subset \{0,1,\ldots,n-1\} = n$, and $\{I_j : j \in J\} \subset \mathcal{G}(\kappa)$ so that $A_\beta \subset (\prod \omega) \times (\prod J)$;

(ii) $A_\beta \cap [(\prod \omega \setminus E(i)) \times (\prod J \setminus F(j))] \neq \emptyset$ whenever $i \in J \setminus \bigcup_m W$, where W_m is infinite and $W_m \cap W_{m'} = \emptyset$ if $m \neq m'$. Express ω as $\omega = \bigcup_{m \in \omega} W_m$, and let $I_m(\kappa) = \{I_i(\kappa) : k \in W_m, i \in n \setminus J\}$. The inductive step is now complete.

Let $\mathcal{G}_k = \{I_k(\alpha) : \alpha < c\}$, and let X_k be as defined earlier. We have already shown that $\prod X_k$ is not Fréchet. It remains to prove that $\prod X_k$ is Fréchet for each $n \in \omega$. To this end, suppose $A \subset \prod X_k$, and $x \in \overline{A} \setminus A$. We need to show there exists $x_n \in A$ with $x_n \to x$. We will prove this for the case $A \subset \omega^n$ and $x = (\omega,\omega,\ldots,\omega) = \omega^\omega$, the other cases being trivial or reducible to a case similar to this one.
Let $\mathcal{G} = \bigcup_{n} \mathcal{G}_{n}$. Suppose $A \cap (\prod_{n} \omega \setminus \mathcal{E}(i)) = \emptyset$, where $\mathcal{E}(i)$ is a finite union of elements of \mathcal{G}. Then $A \subseteq \bigcup_{n} (\omega \times \cdots \times \omega \times \mathcal{E}(i) \times \omega \times \cdots \times \omega)$, so there exists $j(0) < n$ and $I_{j(0)} \in \mathcal{G}$ so that $I_{j(0)} \subseteq E(j(0))$, and $\omega^{n} \in \text{Cl}(A(0))$, where $A(0) = A \cap \big[\omega \times \cdots \times \omega \times I_{j(0)} \times \omega \times \cdots \times \omega\big]$. Now suppose $A(0) \cap \big[\prod_{n}(\omega \setminus \mathcal{E}(i)' : i \in n \setminus \{j(0)\})\big] \times (I_{j(0)} \setminus D(j(0))) = \emptyset$, where $E(i)'$ is a finite union of elements of \mathcal{G} and $D(j(0))$ is a finite subset of ω. (We are using the subscript to indicate position in the product, in order to simplify notation.) Then there exists $j(1) \in n \setminus \{j(0)\}$ so that $\omega^{n} \in \text{Cl}(A(1))$, where $A(1) = A(0) \cap \big[\omega \times \cdots \times \omega \times I_{j(1)} \times \omega \times \cdots \times \omega \times I_{j(0)} \times \omega \times \cdots \times \omega\big] = A(0) \cap \prod_{n}(\omega : i \in n \setminus \{j(0), j(1)\})$. We continue the process until we have a set $J = \{j(0), \cdots, j(m)\}$ and $A(m) \subseteq (\prod_{n} \omega) \times \prod_{j \in J} I_{j}$ with $\omega^{n} \in \text{Cl}(A(m))$ and $A(m) \cap \big[\prod_{n}(\omega \setminus \mathcal{E}(i)) \times (\prod_{j \in J} \mathcal{F}(j))\big] = \emptyset$ whenever $E(i)$ is a finite union of elements of \mathcal{G} and $D(j)$ is a finite subset of ω.

Choose κ_{0} large enough so that $\{I_{j} : j \in J\} \subseteq \mathcal{G}(\kappa_{0})$. Now $A(m) = A_{\beta}$ for $c \beta$'s, so choose $\beta_{0} > \sup\{\beta(a) : a < \kappa_{0}\}$ such that $A(m) = A_{\beta_{0}}$. Then for any $\kappa_{0} \leq \kappa < c$, it is true that $A_{\beta_{0}} \cap J$, and κ satisfy (i) and (ii) in the above construction of the \mathcal{G}_{κ}'s. Thus $\beta_{0} = \beta(\kappa)$ for some $\kappa_{0} \leq \kappa < c$, and we have the sequence x_{0}, x_{1}, \cdots in $A_{\beta(\kappa)}$ that we chose in the construction. It is easy to see from the definition of X_{i} that the set $\{\pi_{i}(x) : k \in W_{n}\}$ converges to ω in X_{i} for each $i \leq n$, and since $C(x_{j}) \cap C(x_{k}) = \emptyset$ for $j \neq k$, then $\{x_{k} : k \in W_{n}\}$ converges to ω^{n}. This completes the proof.

Remark. We can get an example with only one non-isolated
point as follows: let Y be the space which is the free union X of the X_k's, with the points "00" identified to a single point $\hat{0}$. Let $\pi: X + Y$ be the projection. Define a neighborhood of $\hat{0}$ to be of the form $\pi(U_1 U \cdots U U_n U X_{n+1} U X_{n+2} U \cdots)$, where U_i is an open set in X_i containing 00.

References

Auburn University
Auburn, Alabama 36830