MAPPING THEOREMS FOR PLANE CONTINUA

by

CHARLES L. HAGOPIAN
In 1927 Kuratowski [12, p. 262] defined a continuum M to be of type λ if M is irreducible and every indecomposable continuum in M is a continuum of condensation. If a continuum M is of type λ, then M admits a monotone upper semi-continuous decomposition to an arc with the property that each element of the decomposition has void interior relative to M [13, Theorem 3, p. 216].

In 1933 Knaster and Mazurkiewicz [8] defined a continuum M to be λ-connected if for every pair p,q of points of M, there exists a continuum of type λ in M that is irreducible between p and q. They pointed out that λ-connectivity is a natural generalization of α-connectivity (arcwise connectivity) and gave two examples to show that unlike α-connectivity, λ-connectivity is not a continuous invariant. The domain in each of their examples is not planar.

Knaster and Mazurkiewicz [8, p. 90] raised the question of whether there exist counterexamples to the invariance of λ-connectivity under continuous transformations in the plane. In this paper I prove that if M is a λ-connected plane continuum and f is a continuous function of M into the plane, then $f[M]$ is λ-connected.

The following intermediate property (weaker than α-connectivity but stronger than λ-connectivity) is defined in the last section of [8].

A continuum M is δ-connected if for each pair p,q of
points of M, there exists a hereditarily decomposable continuum in M that is irreducible between p and q. The closure of any ray in E^3 (Euclidean 3-space) that limits on a disk is a λ-connected continuum that is not δ-connected. Every hereditarily unicoherent λ-connected continuum is δ-connected. It follows from Theorem 2 of this paper that δ-connectivity and λ-connectivity are equivalent properties for plane continua.

In 1972 I [1] proved that every δ-connected nonseparating plane continuum has the fixed-point property. Krasinkiewicz gave another proof of this theorem in [9].

There exists a ray P in E^3 such that P limits on a disk and the closure of P is a continuous image of the topologist's sine curve. Hence δ-connectivity is not a continuous invariant. However, I [4] proved that if M is a δ-connected continuum and f is a continuous function of M into the plane, then $f[M]$ is δ-connected.*

Unfortunately, I [1, 3, 4, 5, 6, and 7] was unaware of Knaster and Mazurkiewicz's article [8] and called δ-connected continua λ-connected. In 1974 Krasinkiewicz [10, Theorem 3.2] proved that every hereditarily unicoherent continuum that is

*The proof of Theorem 3 of [4] can be simplified considerably by replacing line 30 of page 280 through line 22 of page 282 with the following:

"element of V_1 that joins q_2 to a_1, and (2) q_2 is the last point of $[y_1, q_1]$ that can be joined to a_1 by an element of V_1. Define $K_1 = [p_1, a_1] \cup L_1 \cup [q_2, q_1]$. Let $Z_1 = K_1$. Note that Z_1 is a continuum in $S^2 - G_1$ that contains $\{p_1, q_1\}$."

Hagopian
a continuous image of a δ-connected continuum is hereditarily decomposable. Although Krasinkiewicz said he was following Knaster and Mazurkiewicz [8], he also called δ-connected continua λ-connected. The second example of Knaster and Mazurkiewicz [8] shows that Krasinkiewicz's theorem does not hold for λ-connected continua. In this example the product of the pseudo-arc and a circle is projected onto the pseudo-arc. In [11] Krasinkiewicz proved several other interesting theorems for δ-connected continua that do not hold for λ-connected continua.

Let M be a plane continuum. A subcontinuum L of M is a link in M if L is either the boundary of a complementary domain of M or the limit of a convergent sequence of complementary domains of M. The following characterization of δ-connected plane continua is established in [3, Theorem 2].

Theorem 1. A plane continuum M is δ-connected if and only if each link in M is hereditarily decomposable.

An indecomposable subcontinuum I of a continuum M is terminal in M if there exists a composant C of I such that each subcontinuum of M that meets both C and M - I contains I.

Theorem 2. If a plane continuum M is λ-connected, then M is δ-connected.

Proof. According to Theorem 1, it suffices to show that every link in M is hereditarily decomposable. Suppose there exists a link in M that contains an indecomposable continuum I. It follows from [2, Theorem 2] and [4, Theorem 1] that I
is terminal in M. Hence there exists a composant C of I such that each subcontinuum of M that meets C and M - I contains I. Let p and q be points of C and I - C, respectively.

Since M is \(\lambda\)-connected, there exists a continuum K of type \(\lambda\) in M that is irreducible between p and q. Since K is a decomposable continuum in M that meets C and I - C, K meets M - I. Therefore K contains I, and this contradicts the fact that K is a continuum of type \(\lambda\) irreducible between p and q. Hence every link in M is hereditarily decomposable.

Theorem 3. Every \(\lambda\)-connected plane continuum that does not separate the plane has the fixed-point property.

Proof. Since every \(\delta\)-connected nonseparating plane continuum has the fixed-point property [1], this theorem follows immediately from Theorem 2.

Theorem 4. A plane continuum M is \(\lambda\)-connected if and only if M cannot be mapped continuously onto Knaster's chainable indecomposable continuum with one endpoint.

Proof. This follows from [5, Theorem 2] and Theorem 2.

Theorem 5. If M is a \(\lambda\)-connected plane continuum and \(f\) is a continuous function of M into the plane, then \(f[M]\) is \(\lambda\)-connected.

Proof. By Theorem 2, M is \(\delta\)-connected. Hence \(f[M]\) is \(\delta\)-connected [4, Theorem 5]. Therefore \(f[M]\) is \(\lambda\)-connected.

Still unanswered is the following:

Question. Is every continuous image of every \(\lambda\)-connected plane continuum \(\lambda\)-connected?
I wish to thank Andrzej Lelek for several helpful conversations about λ-connected continua.

References

University of Houston
Houston, Texas 77004
and
California State University
Sacramento, California 95819