Research Announcement:
PLANE INDECOMPOSABLE CONTINUUMS,
PRIME ENDS, AND EMBEDDINGS OF
THE PSEUDO-ARC

by
MICHEL SMITH
PLANE INDECOMPOSABLE CONTINUA, PRIME ENDS, AND EMBEDDINGS OF THE PSEUDO-ARC

Michel Smith

I. Introduction

Beverly Brechner [2] has an example of an embedding of a pseudo-arc M in the plane which she conjectures has the property that no composant of M is arcwise accessible from the complement of M at more than one point.

Here the theorems used to construct such an embedding are stated. Suppose that a continuum X is said to have property IM if X is a plane continuum and no composant of X is arcwise accessible at more than one point from the complement of X. A technique for producing plane indecomposable continua with property IM is described. A continuum which has property IM is a plane continuum each of whose prime ends has the whole continuum as its impression, and hence property IM is of interest in prime end theory. Beverly Brechner [2] has pointed out that the Knaster embedding of the pseudo arc in the plane [3] does not have property IM. The embedding of the pseudo-arc in the plane with property IM is used to produce more embeddings of the pseudo arc in the plane. Specifically there are c inequivalent embeddings of the pseudo arc in the plane, which answers a question posed by Beverly Brechner [2]. In particular there are pseudo-arcs exactly N composants of which are accessible at more than one point and countably infinitely many composants of which are accessible at more
than one point. The author wishes to indicate that these results were independently discovered by Wayne Lewis. The aim of this paper is to announce results that the author has submitted elsewhere.

Definitions and Notations: Space is assumed to be the plane, denoted by E^2, with the standard Euclidean distance d. By a disc is meant a homeomorphic copy of the square disc $[0,1] \times [0,1]$. If H is a set then $\text{Int}(H)$ denotes the interior of H and $\text{Bd}(H)$ denotes the boundary of H. If M is a set and H is a subset of M, then H is said to be accessible from the complement of M if there is a point x in H and an arc α with x as one of its endpoints so that $\alpha - \{x\} \subseteq E^2 - M$, the set H is said to be accessible from the complement of M at the point x.

If H and K are homeomorphic plane continua, then H and K are said to be equivalently embedded in the plane if it is true that there is a homeomorphism h of E^2 onto itself that maps H onto K.

If D is a disc and K is a Cantor set lying in $\text{Bd}(D)$ then $\{S_i\}_{i=1}^{\infty}$ is said to be a defining sequence of segments for K in $\text{Bd}(D)$ if it is true that for each positive integer i, S_i is an arc minus its endpoints which lies in $\text{Bd}(D)$, no two elements of $\{S_i\}_{i=1}^{\infty}$ intersect, and $K = \text{Bd}(D) - \bigcup_{i=1}^{\infty} S_i$.

II. Plane Indecomposable Continua with Property IM

Theorem 2.1. Suppose S is the square disc $[0,1] \times [0,1]$, I is $[0,1] \times \{0\}$, K is the Cantor set lying in I and D_1, D_2, \ldots is a sequence of discs lying in S so that:

1) $D_{n+1} \subseteq D_n$ and $D_1 = S$
2) $K \subseteq \text{Bd}(D_n)$ for all positive integers n, and

3) if $\varepsilon > 0$ and P is a point of $I - K$ then there exists an integer N and an integer $n > N$ so that $P \in D_N - D_n$ and every point of D_n lies within ε of the component of $D_N - D_n$ containing P.

Then the common part M of the discs D_1, D_2, \cdots is an indecomposable plane continuum uncountably many composants of which are accessible from the complement of M, in particular no two points of $K - \{(0,0), (1,0)\}$ lie in the same composant of M.

Theorem 2.2. Suppose that there exists sequences $D_1, D_2, D_3, \cdots; K_1, K_2, K_3, \cdots; \{S_{1i}\}_{i=1}^{\infty}, \{S_{2i}\}_{i=1}^{\infty}, \{S_{3i}\}_{i=1}^{\infty}, \cdots; R_1, R_2, R_3, \cdots; J_1, J_2, J_3, \cdots; \text{and } U_1, U_2, U_3, \cdots$ so that for each $n \in \mathbb{Z}^+$:

1) D_n is a disc and $D_n \subseteq D_{n-1}$;

2) K_n is a Cantor set in $\text{Bd}(D_n)$ with $K_n \subseteq K_{n+1}$ and $\{S_{1i}\}_{i=1}^{\infty}$ is a defining sequence of segments in $\text{Bd}(D_n)$ for K_n which are ordered in non-increasing order by diameter,

$$\text{diam}(S^n_{1i}) < 1/n$$

for all positive integers i and

$$\text{Max} \{\text{diam}(S^n_{1i})\}_{i=1}^{\infty} < \text{Max} \{\text{diam}(S^{n-1}_{1i})\}_{i=1}^{\infty}.$$

3) $R_1 = S^1_{11}$ and R_n is an element S^j_{1n} of $\bigcup_{j=1}^{n} \{S_{1i}\}_{i=1}^{\infty}$ which has diameter $\text{Max} \{\text{diam}(S^j_{1i}) \mid S^j_{1i} \neq R_k \text{ for positive integers } i, j, \text{ and } k \text{ with } j \leq n \text{ and } 0 < k < n\}.$

4) J_n is a point lying in $R_n, J_{n-1} \notin D_n$, and U_{n-1} is the component of $D_{k_n} - D_n$ containing J_{n-1} where k_n is the last integer so that $J_{n-1} \in \text{Bd}(D_{k_n})$; and

5) every point of D_n lies within $1/n$ of U_{n-1}.

Then if $M = \bigcap_{n=1}^{\infty} D_n$ then M is an indecomposable plane continuum no composant of which is accessible at more than one point.
from the complement of M.

Theorem 2.3. There exists a pseudo-arc M in the plane such that no composant of M is accessible from the complement of M at more than one point.

Observation. Any continuum with property 1M must be indecomposable. There exist different indecomposable continua with property IM. To see this last statement, let $D_1 = [0,1] \times [0,1]$ and let a be a nonseparating plane continuum lying in D_1 and which intersects $\text{Bd}(D_1)$ in exactly one point. Then a sequence D_1, D_2, \ldots can be constructed satisfying the hypothesis of theorem 2.2 so that $a \subset D_i$ for all positive integers i. Thus $a \subset M = \cap_{i=1}^{\infty} D_i$. It follows then that continua with property IM need not be hereditarily indecomposable.

III. Embeddings of the Pseudo Arc in the Plane

Theorem 3.1. If n is a positive integer then there exists a pseudo arc M_n in the plane so that exactly n composants of M_n are accessible at more than one point from the complement of M_n.

Lemma. Suppose n_1, n_2, \ldots is a sequence of non-negative integers. There exists a pseudo-arc M in the plane and a sequence M_1, M_2, \ldots of pseudo-arcs lying in M such that:

1) M_i is a pseudo-arc in the plane and exactly n_i composants of M_i are accessible from the complement of M_i at more than one point;

2) if $i \neq j$ then M_i and M_j lie in different composants c_i and c_j respectively of M;

3) if c is a composant of M and c is accessible from the
complement of \(M \) at more than one point then \(c = c_i \) for some positive integer \(i \);

4) if \(z_i \) is the set of points of \(c_i \) at which \(c_i \) is accessible from the complement of \(M \) then \(z_i = M_i \); and

5) if \(H \) is a composant of \(M_i \) which is accessible from the complement of \(M_i \) at more than one point then the point \(p \) of \(H \) is accessible from the complement of \(M \) if and only if \(p \) is accessible from the complement of \(M_i \).

Theorem 3.2. There are \(c \) inequivalent embeddings of the pseudo-arc in the plane, where \(c \) is the cardinality of the real numbers.

Bibliography

9. M. Smith, Plane indecomposable continua no composant of which is accessible at more than one point, to appear.
10. ________, Uncountably many different embeddings of the pseudo-arc in the plane, to appear.
Smith

Auburn University
Auburn, Alabama 36830