EXAMPLES OF HEREDITARILY STRONGLY INFINITE-DIMENSIONAL COMPACTA

by

R. M. SCHORI AND JOHN J. WALSH
EXAMPLES OF HEREDITARILY STRONGLY INFINITE-DIMENSIONAL COMPACTA

R. M. Schori and John J. Walsh

Examples are given of strongly infinite dimensional compacta where each non-degenerate subcontinuum is also strongly infinite dimensional. These are by far the easiest of such examples in the literature and in addition a dimension theoretic phenomenon is identified which is used to verify this hereditary property.

1. Introduction

The first example of an infinite dimensional compactum containing no n-dimensional (n ≥ 1) closed subsets was given by D. W. Henderson [He] in 1967; shortly thereafter, R. H. Bing [Bi] gave a simplified version. In 1971, Zarelua [Z-1], in a relatively unknown article \(^2\) (in Russian), gives probably the simplest construction of this type of example. Later, in 1974, Zarelua [Z-2] constructed more complicated examples which had the property that each non-degenerate subcontinuum was strongly infinite dimensional. In 1977, the authors together with L. Rubin [R-S-W] developed an abstract dimension theoretic approach for constructing these types of examples; a significant feature of the latter approach was that the key concepts of essential families and continuum-wise separators were properly identified. The second author [Wa] used

\(^1\)The first author was partially supported on NSF Grant MCS 76-06522.

\(^2\)The authors only became aware of [Z-1] during the final draft of this paper.
this abstract approach to construct infinite dimensional compacta containing no n-dimensional \(n > 1 \) subsets (closed or not).

The examples presented in this paper have two important features: first, their construction is particularly simple and clearly illustrates the phenomena underlying all the previous constructions; and second, in spite of the simplicity of their construction, these examples have the property that every non-degenerate subcontinuum is strongly infinite dimensional. A phenomenon is isolated in §7 which shows that these examples are hereditarily strongly infinite dimensional and can be used to show that the "extra care" exercised in [Z-2] and [R-S-W] in order to insure this hereditary property is not necessary. The second example in this paper, see §6, uses the same construction as in [Z-1] where rather technical proofs are used to verify the weaker condition that the example contains no n-dimensional \(n > 1 \) closed subsets. This property follows rather automatically for us using the theory developed in [R-S-W].

2. Definitions and Basic Concepts

By a space we mean a separable metric space, by a compactum we mean a compact space, and by a continuum we mean a compact connected space. We follow Hurewicz and Wallman [H-W] for basic definitions and results in dimension theory. Specifically, by the dimension of a space \(X \), denoted \(\dim X \), we mean either the covering dimension or inductive dimension (since these are equivalent for separable metric spaces). A space which is not finite dimensional is said to be infinite.
We collect below the definitions and results needed in this paper; the reader is referred to [R-S-W] for a more thorough discussion.

2.1. **Definition.** Let A and B be disjoint closed subsets of a space X. A closed subset S of X is said to separate A and B in X if X-S is the union of two disjoint open sets, one containing A and the other containing B. A closed subset S of X is said to continuum-wise separate A and B in X provided every continuum in X from A to B meets S.

2.2. **Definition.** Let X be a space and \(\Gamma \) be an indexing set. A family \(\{ (A_k, B_k) : k \in \Gamma \} \) is essential in X if, for each \(k \in \Gamma \), \((A_k, B_k)\) is a pair of disjoint closed sets in \(X_k \) such that if \(S_k \) separates \(A_k \) and \(B_k \) in \(X \), then \(\cap \{ S_k : k \in \Gamma \} \neq \emptyset \).

2.3. **Theorem.** [H-W, p. 35 and p. 78]. For a space \(X \), \(\dim X \geq n \) if and only if there exists an essential family \(\{ (A_k, B_k) : k = 1, \ldots, n \} \) in \(X \).

2.4. **Remark.** Using the Hausdorff metric, the set of non-empty closed subsets of a compactum is a compactum. When we refer to a collection of closed subsets being dense, we mean dense with respect to the topology generated by this metric.

2.5. **Proposition.** [R-S-W; Proposition 3.4]. Let \(\{ (A_k, B_k) : k = 1, 2, \ldots, n \} \) be a collection of pairs of non-empty, disjoint closed subsets of a compactum \(X \). For each
k = 1,2,⋯,n, let S_k be a non-empty dense set of separators of A_k and B_k and let Y be a closed subset of X. If for each choice of separators $S_k \in S_k$, $k = 1,2,⋯,n$, we have that $(\cap \{ S_k : k = 1,2,⋯,n \}) \cap Y \neq \emptyset$, then $\{ (A_k \cap Y, B_k \cap Y) : k = 1,2,⋯,n \}$ is an essential family in Y and, therefore, $\dim Y \geq n$.

2.6. Definition. A space X is strongly infinite dimensional if there exists a denumerable essential family $\{ (A_k, B_k) : k = 1,2,⋯ \}$ for X. A space X is hereditarily strongly infinite dimensional if each non-degenerate subcontinuum of X is strongly infinite dimensional.

2.7. Theorem. [R-S-W; Proposition 5.5]. Let X be a strongly infinite dimensional space with an essential family $\{ (A_k, B_k) : k = 1,2,⋯ \}$. For $k = 2,3,⋯$, let S_k be a continuum-wise separator of A_k and B_k in X. If $Y = \cap \{ S_k : k = 2,3,⋯ \}$, then Y contains a continuum meeting A_1 and B_1.

3. Outline of the Example

Let the Hilbert cube be denoted by $Q = \prod_I$ where $I_k = [0,1]$, let $\Pi_k : Q \rightarrow I_k$ denote the projection, and let $A_k = \Pi_k^{-1}(1)$ and $B_k = \Pi_k^{-1}(0)$. The family $\{ (A_k, B_k) : k = 1,2,⋯ \}$ is an essential family in Q [H-W, p. 49].

For each $k = 1,2,⋯$, a space $Y_k = X_{3k-1} \cap X_{3k}$ will be constructed such that:

3.1. X_j continuum-wise separates A_j and B_j.

3.2. If C is a closed subset of Y_k and $\Pi_k(C) = I_k$, then $\dim C \geq 2$; if fact, $\{ (A_{3k-1} \cap C, B_{3k-1} \cap C), (A_{3k} \cap C, B_{3k} \cap C) \}$.
is essential in C.

Thus, \(Y' = \cap \{ Y_k : k = 1,2,\ldots \} \) has the property guaranteed by Theorem 2.7 that \(Y' \) contains a continuum meeting \(A_1 \) and \(B_1 \) (also \(A_{3k+1} \) and \(B_{3k+1} \)) and if \(C \) is a closed subset of \(Y' \) such that for some \(k, \Pi_k(C) = I_k \), then \(\dim C \geq 2 \).

Also a space \(X_{3k+1} \) will be constructed such that 3.1 is satisfied as well as:

3.3. If \(C \) is a non-degenerate subcontinuum of \(Y'' = \cap \{ X_{3k+1} : k = 1,2,\ldots \} \), then there is an integer \(k \) such that \(\Pi_k(C) = I_k \).

The space \(Y = Y' \cap Y'' = \cap \{ X_k : k = 2,3,\ldots \} \) will be an example of a hereditarily strongly infinite dimensional space. We will now argue using conditions 3.1-3.3 that it is an infinite dimensional compactum that contains no \(n \)-dimensional \((n \geq 1) \) closed subsets. Theorem 2.7 guarantees that \(Y \) contains a continuum meeting \(A_1 \) and \(B_1 \) and hence \(\dim Y \geq 1 \), and 3.2 and 3.3 guarantee that \(X \) contains no 1-dimensional subcontinua. Then the compactness insures that \(X \) contains no 1-dimensional closed subsets since compact totally disconnected sets are 0-dimensional. This is sufficient since, from the inductive definition of dimension, it is clear that each closed \(n \)-dimensional \((n \geq 1) \) set contains \(k \)-dimensional closed subsets for each \(0 \leq k < n \) and in particular for \(k = 1 \). Thus, \(Y \) is infinite dimensional and contains no \(n \)-dimensional \((n \geq 1) \) closed subsets. In section 6 we prove that this example is hereditarily strongly infinite dimensional.

4. Constructing \(Y_k \)

Let \(\{ W_i : i = 1,2,\ldots \} \) be the null sequence of open
intervals in I_k indicated in Figure 1. Let $\{S_{3k-1}^i: i = 1,2,\ldots\}$ and $\{S_{3k}^i: i = 1,2,\ldots\}$ be a countable dense sets of separators of A_{3k-1} and B_{3k-1} and A_{3k} and B_{3k}, respectively. Let $a: N \to N \times N$ be a bijection where N denotes the natural numbers and let a_1 and a_2 be a composed with projection onto the first and second factor, respectively.

Let $X_{3k-1} = \pi_k^{-1}(I_k - \cup\{W_i: i = 1,2,\ldots\}) \cup (\cup(S_{3k-1}^i \cap \pi_k^{-1}(W_i): i = 1,2,\ldots))$ and let $X_{3k} = \pi_k^{-1}(I_k - \cup\{W_i: i = 1,2,\ldots\}) \cup (\cup(S_{3k}^i \cap \pi_k^{-1}(W_i): i = 1,2,\ldots))$; see Figure 2.

where $k = 1$. It is easily seen that X_{3k-1} and X_{3k} continuum-wise separate A_{3k-1} and B_{3k-1} and A_{3k} and B_{3k}, respectively.

In addition, if $C \subseteq X_{3k-1} \cap X_{3k}$ with $\pi_k(C) = I_k$ and $(i,j) \in N \times N$, then $C \cap \pi_k^{-1}(W_i) \subseteq S_{3k-1}^i \cap S_{3k}^j$; therefore, Proposition 2.5 guarantees that if C is a closed subset of $X_{3k-1} \cap X_{3k}$ with $\pi_k(C) = I_k$, then $\dim C \geq 2$.

The nature of X_{3k+1} is different than that of X_{3k-1} and X_{3k}; the role of X_{3k+1} is to insure that condition 3.3 will hold. Let $X_{3k+1} = \pi_k^{-1}(R_{3k+1})$ where π_k,R_{3k+1} is the projection onto $I_k \times I_{3k+1}$ and $R_{3k+1} \subseteq I_k \times I_{3k+1}$ is the "roof-top" in Figure 3.
5. Verifying Condition 3.3

If J is a subinterval of $[0,1]$, let $\ell(J)$ denote the length of J. Let $C \subseteq Y$ be a non-degenerate subcontinuum, let i_1 be such that $\Pi_{i_1}(C)$ is also non-degenerate, and let $\ell(\Pi_{i_1}(C)) = \varepsilon > 0$. Note that since the slopes of the straight line segments of R_{3i+1} are ± 2, and $C \subseteq X_{3i+1}$, then $\frac{1}{2} \notin \Pi_{i_1}(C)$.
implies that \(\ell(\Pi_{3i+1}(C)) = 2 \varepsilon \). Inductively, let \(i_n = 3i_{n-1} + 1 \), let \(J_n = \Pi_{i_n}(C) \) and observe that if \(\frac{1}{2} \notin J_{n-1}' \), then \(\ell(J_n) = n\varepsilon \). Since each \(J_n \) has length 1, it follows that there exists an \(N \) such that \(\frac{1}{2} \in J_N \). Thus, by observing the corresponding properties of \(R_{3i+1} \), it follows that \(1 \notin J_{N+1} \) and that \(0 \in J_{N+2} = [0, b] \) for some \(0 < b < 1 \). Following the above argument we see that if \(\frac{1}{2} \leq b < 1 \), then \(J_{N+3} = [0, 1] \) and if \(0 < b < \frac{1}{2} \), then \(J_{N+3} = [0, 2b] \) and hence for some \(j > 3 \), \(J_{N+j} = [0, 1] \) which says that for some \(k \), \(\Pi_k(C) = I_k \).

6. A Generalization

Let \(X \) be a strongly infinite dimensional compactum with essential family \(\{(A_k, B_k) : k = 1, 2, \ldots \} \); let \(\{\Pi_k : k = 1, 2, \ldots \} \) be a countable dense subset of the space of all mappings from \(X \) to \(I = [0, 1] \); for each \(k \), let \(\{S^k_i : i = 1, 2, \ldots \} \) be a countable dense set of separators of \(A_k \) and \(B_k \), and let \(\{W_i : i = 1, 2, \ldots \} \) be the null sequence of open intervals in \([\frac{1}{3}, \frac{2}{3}]\) indicated in Figure 4.

\[
\begin{align*}
0 & \quad \frac{1}{2} & \quad \frac{2}{3} & \quad 1 \\
\cdots W_3 & W_2 & W_1 \\
& \quad \text{Fig. 4}
\end{align*}
\]

Let \(a, a_1, a_2 \) be as before and, for each \(k \), let \(Y_k = X_{2k} \cap X_{2k+1} \) where

\[
x_{2k} = \Pi_{-1}^k(I_k - \cup\{W_i : i = 1, 2, \ldots \}) \cup \left(\cup\{S^2_{a_1(i)} \cap \Pi_k^{-1}(W_i) : i = 1, 2, \ldots \} \right)
\]

and
\[X_{2k+1} = \Pi_k^{-1}(I_k - \bigcup \{W_i : i = 1, 2, \ldots \}) \cup \\
(\bigcup S_{2k+1}^{2k+1} \cap \Pi_k^{-1}(W_i) : i = 1, 2, \ldots). \]

It is easily seen that condition 3.1 is true and the earlier argument shows that:

6.1. If \(C \) is a closed subset of \(Y_k \) and \(\Pi_k(C) \supseteq [\frac{1}{2}, \frac{3}{2}] \),
then \(\dim C \geq 2 \), if fact, \(\{ (A_{2k} \cap C, B_{2k} \cap C), (A_{2k+1} \cap C, B_{2k+1} \cap C) \} \) is essential in \(C \).

Letting \(Y = \cap \{ Y_k : k = 1, 2, \ldots \} = \cap \{ X_k : k = 2, 3, \ldots \} \),
Theorem 2.7 guarantees that \(Y \) contains a continuum meaning \(A_1 \) and \(B_1 \). Since the \(\Pi_k \)'s are a dense set of mappings the following holds:

6.2. If \(C \subseteq Y \) is a non-degenerate subcontinuum of \(Y \),
then for some \(k, \Pi_k(C) \supseteq [\frac{1}{2}, \frac{3}{2}] \).

Thus our previous argument shows that we have constructed in an arbitrary strongly infinite dimensional space \(X \) a subcompactum \(Y \) that is infinite dimensional and contains no \(n \)-dimensional \((n > 1) \) closed subsets. We will show in the next section that in fact \(Y \) is hereditarily strongly infinite dimensional.

7. Strong Infinite Dimensionality of Subcontinua

One reason for the additional complexity in the construction in [Z-2] and [R-S-W] was to be able to conclude that the examples had the additional property that each non-degenerate subcontinuum was strongly infinite dimensional. Although we made no effort to construct examples with this hereditary property, the following propositions isolate a phenomenon which forces them to have this property.
Proposition 7.1 gives conditions on a continuum that imply it is strongly infinite dimensional. Observe that conditions 3.2 and 3.3 (resp., 6.1 and 6.2) imply that each non-degenerate subcontinuum of the example constructed in sections 3 and 4 (resp., section 6) satisfies the hypothesis of Proposition 7.1 and thus these examples are hereditarily strongly infinite dimensional. An alternative argument for the example constructed in section 6 can be given using Proposition 7.2.

7.1. Proposition. Let \(\{(A_k, B_k) : k = 1, 2, \ldots \} \) be a family of pairs of disjoint closed subsets of a continuum \(X \). Suppose that, for each \(k \), there are positive integers \(i \) and \(j \) such that, for each continuum \(C \subseteq X \) meeting \(A_k \) and \(B_k \), the pair \(\{(A_i \cap C, B_i \cap C), (A_j \cap C, B_j \cap C)\} \) is essential in \(C \).

If, for some \(n \), \(A_n \neq \emptyset \) and \(B_n \neq \emptyset \), then \(X \) is strongly infinite dimensional. Alternately, if for some \(i \) and \(j \), \(\{(A_i \cap X, B_i \cap X), (A_j \cap X, B_j \cap X)\} \) is essential in \(X \), then \(X \) is strongly infinite dimensional.

Proof. Let \(i_1 \) and \(j_1 \) be such that \(\{(A_{i_1}, B_{i_1}), (A_{j_1}, B_{j_1})\} \) is essential in \(X \). Let \(i_2 \) and \(j_2 \) be such that for each continuum \(C \) meeting \(A_{i_1} \) and \(B_{j_1} \), \(\{(A_{i_2} \cap C, B_{i_2} \cap C), (A_{j_2} \cap C, B_{j_2} \cap C)\} \) is essential in \(C \). Recursively, for \(n \geq 3 \), let \(i_n \) and \(j_n \) be such that for each continuum \(C \) meeting \(A_{j_{n-1}} \) and \(B_{j_{n-1}} \), \(\{(A_{i_n} \cap C, B_{i_n} \cap C), (A_{j_n} \cap C, B_{j_n} \cap C)\} \) is essential in \(C \). We now show that the family \(\{(A_{i_n}, B_{i_n}) : n = 1, 2, \ldots \} \) is essential in \(X \). For \(n = 1, 2, \ldots \), let \(S_n \) separate \(A_{i_n} \) and \(B_{i_n} \).
Since \(\{(A_1, B_1), (A_2, B_2)\} \) is essential in \(X \), \(S_1 \) contains a continuum from \(A_1 \) to \(B_1 \). Since \(\{(A_2, B_2), (A_1, B_1)\} \) is essential in this continuum, \(S_1 \cap S_2 \) contains a continuum from \(A_2 \) to \(B_2 \). Since \(\{(A_1, B_1), (A_2, B_2)\} \) is essential in this continuum, \(S_1 \cap S_2 \cap S_3 \) contains a continuum from \(A_3 \) to \(B_3 \). Continuing this argument, for each \(n \geq 1 \), \(S_1 \cap \cdots \cap S_n \) contains a continuum from \(A_n \) to \(B_n \) and, therefore, \(\cap\{S_n: n = 1, 2, \cdots\} \neq \emptyset \).

7.2. Proposition. Let \(X \) be a compactum with \(\dim X \geq 1 \). Suppose that, for each pair of disjoint closed sets \(H \) and \(K \), there is a family \(\{(A, B), (D, E)\} \) of pairs of disjoint closed sets such that \(\{(A \cap C, B \cap C), (D \cap C, E \cap C)\} \) is essential in each continuum \(C \) from \(H \) to \(K \). Then each non-degenerate subcontinuum of \(X \) is strongly infinite dimensional.

Proof. Since the hypotheses are satisfied by non-degenerate subcontinua of \(X \), it suffices to assume that \(X \) is a continuum and to show that \(X \) is strongly infinite dimensional. Let \(\{(A_1, B_1), (D_1, E_1)\} \) be an essential family in \(X \). Recursively, for \(n \geq 2 \), let \(\{(A_n, B_n), (D_n, E_n)\} \) be such that \(\{(A_n \cap C, B_n \cap C), (D_n \cap C, E_n \cap C)\} \) is essential in each continuum \(C \) from \(D_{n-1} \) to \(E_{n-1} \). The argument used in the proof of Proposition 7.1 shows that \(\{(A_n, B_n): n = 1, 2, \cdots\} \) is essential in \(X \).

Bibliography

Oregon State University
Corvallis, Oregon 97331

and

University of Tennessee
Knoxville, Tennessee 37916