ARBITRARY POWERS OF THE ROOTS OF UNITY ARE MINIMAL HAUSDORFF TOPOLOGICAL GROUPS

by

DOUGLASS L. GRANT
ARBITRARY POWERS OF THE ROOTS OF
UNITY ARE MINIMAL HAUSDORFF
TOPOLOGICAL GROUPS

Douglass L. Grant

It is well-known [B, D] that minimality in the category of Hausdorff groups may fail to be preserved even in finite products. However, it has also been shown [D, G] that the group U of complex roots of units is well-behaved in this respect, all finite powers of U being minimal.

R. M. Stephenson asked [St2, Question 10] whether the countably infinite power of U is a minimal group. We answer this question in the affirmative, as a corollary of a stronger result.

Let us recall from [H] that a topological group G is called a $B(A)$ (resp., $B_r(A)$) group if every continuous, almost open (resp., and one-to-one) homomorphism from G onto a Hausdorff group is open. The author, generalizing earlier results of L. J. Sulley [Su], showed [G, Theorem 1.4] that G is a $B(A)$ group (resp., $B_r(A)$ group) if and only if its completion H with respect to the two-sided uniformity is a $B(A)$ (resp., $B_r(A)$) group and $G \cap N$ is dense in N for every closed normal subgroup N of H (resp., $G \cap N$ is non-trivial for every non-trivial closed normal subgroup of H). Stephenson showed [St1] that a condition identical to the one stated for the $B_r(A)$ property guarantees the inheritance of minimality by precompact groups from their compact completions. It therefore follows that, for precompact groups, the $B_r(A)$ property is equivalent
to minimality, and both are consequences of the \(B(A) \) property. It is now evident that the following theorem implies an affirmative answer to Stephenson's question.

Theorem. Let \(A \) be any set. Then \(U^A \) is a \(B(A) \) topological group.

Let \(T \) denote the circle group, \(e \) the function \(\mathbb{R} \to T \) given by \(e(t) = e^{2\pi \text{it}} \), \((t) \) the fractional part of \(t \). A subset \(\{t_1, \ldots, t_n\} \) of \(\mathbb{R} \) is said to be rationally independent if \(r_1t_1 + \cdots + r_nt_n = 0 \) with each \(r_i \) rational implies \(r_i = 0 \) for each \(i \). We will require the following lemma which is a trivial extension of Theorem 443 of [HW].

Lemma. Let \(\{1, \beta_1, \ldots, \beta_n\} \) be rationally independent, \(p \) a positive integer, \(r \in \{0, 1, \ldots, p-1\} \). Then \(\{(k\beta_1), \ldots, (k\beta_n)\}: k \equiv r \ (\text{mod} \ p) \) is dense in the \(n \)-dimensional unit cube, and its image under \(e^n \) therefore dense in \(T^n \).

We now proceed to the proof of the theorem.

Proof. The case where \(A \) is finite has already been proved as Example 2 of [G]. We therefore assume \(A \) to be infinite. By a result of Soundararajan [So], it is sufficient to show that \(U^A \) intersects the closure of every singly-generated subgroup of \(T^A \) in a dense subgroup of that closure.

Let \(x = (x_\alpha)_{\alpha \in A} \in T^A \), \(\langle x \rangle \) the subgroup it generates, and \(X \) the closure of this subgroup in \(T^A \). If \(\text{supp} \ x = \{\alpha \in A: x_\alpha \neq 1\} \) is finite, then a similar argument to that in [G] will establish that \(U^A \cap X \) is dense in \(X \). One may then further assume, without loss of generality, that \(\text{supp} \ x = A \).
Let \(A_0 = \{ a \in A : x_a \in U \} \), \(A_1 = A \setminus A_0 \). Let \(x_a = e(\beta_a) \); then \(\beta_a \in Q \) iff \(a \in A_0 \). Let \(B \) be a maximal subset of
\(\{ \beta_a : a \in A_1 \} \) such that \(B \cup \{ 1 \} \) is rationally independent,
\(A_2 = \{ a \in A_1 : \beta_a \in B \} \). Then, for each \(\gamma \in A_1 \setminus A_2 \), there
exist an integer \(n(\gamma) \), a finite subset \(F_\gamma = \{ \beta_1, \cdots, \beta_{\gamma n(\gamma)} \} \)
of \(B \) of minimal size, and a finite set of non-zero rational
numbers \(Q_\gamma = \{ c_1, \cdots, c_{\gamma n(\gamma)} \} \) such that \(\beta_\gamma = \sum_{i=1}^{\gamma n(\gamma)} c_i \beta_i \).

The elements of \(\langle x \rangle \) can then be characterized as follows:
\(y = (y_a) \in \langle x \rangle \) if and only if, for some integer \(r \), \(y_a = e(\beta_a r) \)
for each \(a \). In particular, for \(a \in A_1 \setminus A_2 \), \(y_a = \sum_{i=1}^{\gamma n(\gamma)} c_i \beta_i \).

Let \(K = \langle x_a \rangle_{a \in A_0} \cup A_0 \). For \((y_a) \in \mathbb{T}^A \), let \(y_a = e(t_a) \). For \(\gamma \in A_1 \setminus A_2 \), define a subgroup \(L_\gamma \) of \(U^A \) by
\(L_\gamma = \{ (y_a) : t_\gamma = \sum_{i=1}^{\gamma n(\gamma)} c_i t_i \} \),
the coefficients being those from \(Q_\gamma \). Let \(L \) denote the inter­
section of the subgroups \(L_\gamma \) for all \(\gamma \in A_1 \setminus A_2 \).

Clearly, \(\langle x \rangle \) is a subset of \(K \times L \), and we claim that it is
in fact a dense subset. Since \((K \times L) \cap U^A \) is dense in \(K \times L \) and
so in its closure, it would then follow that
\(\text{C}(U^A \cap \text{C}(x)) = \text{C}(U^A \cap \text{C}(K \times L)) = \text{C}(K \times L) = \text{C}(x) \).

To establish this density property, we let \(y = (y_a) \in K \times L \), \(y_a = e(t_a) \) for each \(a \). Let \(V = \prod_{a \in A} V_a \) be a neighbour­
hood of \(y \), \(E = \{ a \in A : V_a \neq T \} \), \(E_i = E \cap A_i \) for \(i = 0,1,2 \).
For \(a \in E \), let \(V'_a \) be a neighbourhood of \(t_a \) such that \(e(V'_a) \subseteq V_a \). Now, for \(a \in E_1 \setminus E_2 \), \(t_a = \sum_{i=1}^{\gamma n(\gamma)} c_i t_i \), \(c_i = m_i / n_i \),
g.c.d. \((m_i, n_i) = 1 \). For each \(\gamma \in E_2 \), let \(G_\gamma = \{ a : \beta_\gamma = \beta_a,i(\gamma) \) for some \(i(\gamma) \in \{ 1, \cdots, n(\gamma) \} \}, \) and \(n_\gamma = \text{l.c.m.}(n_a,i(\gamma)) : a \in G_\gamma \). For each \(\gamma \in E_2 \) and \(a \in G_\gamma \), let \(d_a,i(\gamma) \) be the inte­
ger \(c_a,i(\gamma) n_\gamma \). Furthermore, let \(y_a = x_a^r \) for each \(a \in A_0 \), and
let \(p \) denote the least common multiple of the orders of the elements \(x_{\alpha} \), \(\alpha \in E_0 \). Then, for any integer \(j \), \(y_{\alpha} = x_{\alpha}^{r} = x_{\alpha}^{\cdot r+pj} \), for each \(\alpha \in E_0 \).

For each \(\alpha \in E_1 \setminus E_2 \), let \(C_{\alpha} = \{ \gamma \in A_2 : \alpha \in C_\gamma \} \), and \(C = \bigcup \{ C_{\alpha} : \alpha \in E_1 \setminus E_2 \} \). For each \(\alpha \in C \), define \(\beta_{\alpha}' = \beta_{\alpha}/n_{\alpha} \), and \(t_{\alpha}' = t_{\alpha}/n_{\alpha} \); for \(\alpha \in A \setminus C \), \(\beta_{\alpha}' = \beta_{\alpha} \) and \(t_{\alpha}' = t_{\alpha} \). It is then trivial to see that \(\{ \beta_{\alpha}' : \alpha \in A \} \cup \{ 1 \} \) is rationally independent, and that

\[
t_{\alpha} = \sum_{\gamma \in C_{\alpha}} \frac{d_{\alpha}}{n_{\alpha}} \cdot i(\gamma) \cdot t_{\alpha}'
\]

for each \(\alpha \in E_1 \setminus E_2 \).

For all \(\alpha \in C \), select neighbourhoods \(V_{\alpha}' \) of \(t_{\alpha}' \) such that

\[
\sum_{\gamma \in C_{\alpha}} \frac{d_{\alpha}}{n_{\alpha}} \cdot i(\gamma) \cdot V_{\alpha}' \subseteq V_{\alpha}'.
\]

Let \(Y = \prod_{\alpha \in A} Y_{\alpha} \) be the neighbourhood of \((t_{\alpha}')\) given by

\[
Y_{\alpha} = \begin{cases} V_{\alpha}', & \alpha \in C \\ V_{\alpha}', & \alpha \in A \setminus C. \end{cases}
\]

Now, by the Lemma, there exists \(j \equiv r \pmod{p} \) such that

\[
e(j_{\beta_{\alpha}'}) \in e(Y_{\alpha}') \quad \text{for each} \quad \alpha \in E_1 \cup C.
\]

Then

\[
e(j_{\sum_{i=1}^{n(\alpha)} c_{ai} \beta_{ai}}) = e(j_{\sum_{\gamma \in C_{\alpha}} \frac{d_{\alpha}}{n_{\alpha}} \cdot i(\gamma) \beta_{\gamma}'})
= e(\sum_{\gamma \in C_{\alpha}} \frac{d_{\alpha}}{n_{\alpha}} \cdot i(\gamma) \beta_{\gamma}') = e(\sum_{\gamma \in C_{\alpha}} \frac{d_{\alpha}}{n_{\alpha}} \cdot i(\gamma) \cdot (y_{\gamma} + k_{\gamma})),
\]

for some integers \(k_{\gamma} \) and \(y_{\gamma} \in Y_{\gamma}' \),

\[
e(\sum_{\gamma \in C_{\alpha}} \frac{d_{\alpha}}{n_{\alpha}} \cdot i(\gamma) \cdot y_{\gamma}) \cdot 1 \subseteq e(\sum_{\gamma \in C_{\alpha}} \frac{d_{\alpha}}{n_{\alpha}} \cdot i(\gamma) \cdot y_{\gamma}) \subseteq e(V_{\alpha}') \subseteq V_{\alpha}'.
\]

It therefore follows that \(x^r \in V \), and our claim is established.

Corollary. \(U^A \) is a minimal Hausdorff topological group for any set \(A \).

Remark. Prodanov [P] has defined a topological group to be *totally minimal* if all its Hausdorff quotient groups are minimal. Since the \(B(A) \) property and precompactness are both
divisible, and together imply minimality, it follows that U^A has this stronger property, as well.

Question. If every finite power of a group is minimal or a B(A) group, must arbitrary powers of the group have the same property?

Bibliography

Editor's Note:

When this paper was first received, the referee B. Banaschewski, found a major error in the proof. This fact was communicated to the author and some weeks later, Prof. Banaschewski sent to the editor a correct proof by entirely different reasoning. The existence--but not the essence--of this proof was communicated to the author who responded some months later with his own corrected version which is here printed.