A DIFFERENTIABLE, PERFECTLY NORMAL, NONMETRIZABLE MANIFOLD

by

G. KOZLOWSKI AND P. ZENOR
A DIFFERENTIABLE, PERFECTLY NORMAL, NONMETRIZABLE MANIFOLD

G. Kozlowski and P. Zenor*

In answer to a question originally raised by Alexandroff in [A], Rudin and Zenor, using the continuum hypothesis, displayed an example of a perfectly normal, hereditarily separable, non-metrizable topological manifold [R,Z]. In this paper, we show that the Rudin-Zenor manifold can be constructed so that it is analytic. A key step in our construction is a modification of a theorem of Brown [B] which is interesting in its own light; namely, we show that if a differentiable manifold M has an atlas \{(V_i, \phi_i) \mid i \in \omega_0\} such that \(V_{i+1} \supseteq V_i\) and \(\phi_i(V_i) = \mathbb{R}^n\) for all \(i \in \omega_0\), then M is diffeomorphic to \(\mathbb{R}^n\).

The construction of the manifold follows very closely that of [R,Z] and we recommend that the reader be familiar with that paper before proceeding.

Let X be a set, and let n be a fixed positive integer.

A chart is a pair \((U, \phi)\) where \(\phi: U \to \mathbb{R}^n\) is an injective function of a subset U of X onto an open subset \(\phi(U)\) of \(\mathbb{R}^n\).

Two charts \((U, \phi)\), \((V, \psi)\) are compatible, if \(\phi(U \cap V)\) and \(\psi(U \cap V)\) are open subsets of \(\mathbb{R}^n\) and \(\psi^{-1}\mid\phi(U \cap V): \phi(U \cap V) \to \psi(U \cap V)\) is a diffeomorphism.

An atlas on the set X is a collection \\{(U_j, \phi_j) \mid j \in J\}\.

*This author's research was partially supported by NSF Grant #MSC 7813270.
of charts such that \(X = \bigcup \{ U_j \mid j \in J \} \) and any two charts are compatible.

A differential structure \(\mathcal{D} \) on a set \(X \) is a maximal atlas. It is clear that any atlas is contained in a unique differential structure which is said to generate.

If \(\mathcal{A} \) is an atlas on the set \(X \), it is also clear that there is a unique topology on \(X \) with the property that \(\phi : U \to \phi U \) is a homeomorphism of the open set \(U \) onto \(\phi U \) for every chart \((U, \phi) \).

A smooth manifold is a set \(X \) together with a differential structure \(\mathcal{D} \) or \(X \); notation: \((X, \mathcal{D}) \). When there is no danger of confusion, one simply refers to the smooth manifold \(X \).

Let \(D(r) = \{ u \in \mathbb{R}^n \mid |u| < r \} \), and let \(M \) be a smooth \(n \)-manifold. A subset \(D \) of \(M \) is said to be an \(n \)-disk, provided there is a chart \((U, \phi) \) of \(M \) such that \(\phi D = D(r) \) for some positive number \(r \). (This definition allows us to avoid some technicalities regarding differentiability on sets which are not open.)

If \(D \) is an \(n \)-disk in \(M \), then a map \(f : M \to M \) is said to be a radial diffeomorphism in \(D \), if there exist a chart \((U, \phi) \) of \(M \), a positive number \(\varepsilon \), and a diffeomorphism \(\lambda : \mathbb{R} \to \mathbb{R} \) such that \(\phi D = D(1) \), \(\lambda(t) = t \) for all \(t < \varepsilon \) and all \(t > 1 - \varepsilon \), \(f(x) = x \) for all \(x \in M - D \), and \(f(x) = \phi^{-1} \lambda \phi(x) \) for \(x \in D \), where \(\Lambda : \mathbb{R}^n \to \mathbb{R}^n \) if defined by \(\Lambda(u) = \lambda(|u|)u/|u| \) if \(u \neq 0 \) and \(\Lambda(0) = 0 \). Because \(f \) is the identity on \(M - D \) and a diffeomorphism of \(\text{Int} D \), \(f : M \to M \) is in fact a diffeomorphism.

\textbf{Lemma 1.} \textit{If} \(D_1, D_2, D_3, D_4 \) \textit{are} \(n \)-disks in a smooth
manifold \(M \) such that \(D_i \subset \text{Int } D_{i+1} \) for \(i = 1,2,3 \), then there is a diffeomorphism \(f: M \to M \) such that \(f(x) = x \) for \(x \in D_1 \cup (M - D_4) \) and \(\text{Int } fD_2 \supset D_3 \).

Proof. There is a radial diffeomorphism \(g: M \to M \) in \(D_4 \) which is the identity on a nonempty open subset \(B \) of \(\text{Int } D_1 \) and which maps \(D_3 \) into \(D_1 \), and there is a radial diffeomorphism \(h: M \to M \) in \(D_2 \) which maps \(D_1 \) into \(V \). Put \(f = h^{-1}g^{-1}h \). If \(x \in D_3 \), then \(h(x) \in D_3 \) and \(gh(x) \in D_1 \) and consequently \(h^{-1}gh(x) \in \text{Int } D_2 \); hence \(f^{-1}D_3 \in \text{Int } D_2 \), and therefore \(D_3 \subset g(\text{Int } D_2) \).

Theorem 1. If a differentiable manifold \(M \) has an atlas \(\{(U_i, \phi_i) | i \in \omega_0 \} \) such that \(U_i \subset U_{i+1} \) and \(\phi_i U_i = \mathbb{R}^n \) for all \(i \in \omega_0 \), then \(M \) is diffeomorphic to \(\mathbb{R}^n \).

Proof. Let \(h_i = \phi_i^{-1}: \mathbb{R}^n \to U_i \subset M \). From the hypothesis that \(U_i \subset U_{i+1} \) for \(i \in \omega_0 \) it follows that there is a strictly increasing sequence of positive integers \(r_i, i \in \omega_0 \) such that \(U(h_iD(r_i) | i \in \omega_0) = M \) and \(h_iD(r_i) \subset \text{Int } h_{i+1}D(r_{i+1}) \) for \(i \in \omega_0 \). Put \(Q_i = h_iD(r_i) \).

We assert that there exist a sequence of diffeomorphisms \(f_i: M \to M, i \in \omega_0 \) and a strictly increasing sequence of positive numbers \(s_i, i \in \omega_0 \) with limit \(r_1 \) such that \(A(i): f_i \) is the identity on \(M - Q_i+1 \) and on \(f_{i-1} \cdots f_1 f_0 h_1 D(s_{i-1}) \) and such that \(B(i): f_i \cdots f_1 f_0 h_1 D(s_i) \supset Q_i \). To verify this assertion assume inductively that \(f_i \) and \(s_i \) for \(i = 0,1,\ldots,k \) satisfy \(A(i) \) and \(B(i) \) for \(i = 0,1,\ldots,k \). Since \(f_k \cdots f_1 f_0 Q_1 \subset \text{Int } Q_{k+1}, \) there is \(s_{k+1} > s_k \) such that \(0 < r_i - s_{k+1} < l/(k+1) \), and the lemma applies to \(D_1 = f_k \cdots f_1 f_0 h_1 D(s_k), \ D_2 = f_k \cdots f_1 f_0 h_1 D(s_{k+1}), \ D_3 = Q_{k+1}, \) and \(D_4 = Q_{k+2} \) to provide
a diffeomorphism $f_{k+1}: M \to M$ such that $A(k+1)$ and $B(k+1)$ hold.

To complete the proof of the Theorem, define $F: \text{Int } Q_1 \to M$ by $F(x) = \lim_{k \to \infty} F_k(x)$ where $F_k = f_k \cdots f_1 f_0: M \to M$. Since $F(x) = F_k(x)$ for $x \in h_1 D(s_k)$, F is well-defined and clearly a homeomorphism onto M. Since F is a diffeomorphism on each of the open sets $\text{Int } h_1 D(s_k)$, $k \in \omega_0$, it is a diffeomorphism of $\text{Int } Q_1$ (which is diffeomorphic to \mathbb{R}^n) onto M.

Lemma 2. Any closed smooth embedding $\mathbb{R} \to \mathbb{R}^2$ extends to a diffeomorphism of \mathbb{R}^2 onto itself.

Proof. Any closed embedding of \mathbb{R} into \mathbb{R}^2 extends to a closed embedding $f: \mathbb{R} \times [-2,2] \to \mathbb{R}^2$ by means of the Collaring Theorem.

Take a rectilinear triangulation T of $\mathbb{R}^2 \setminus f(\mathbb{R} \times \{0\})$. The 1-simplices of T which are not contained in $f(\mathbb{R} \times [-1,1])$ comprise a sequence $\{A(j) | j \in \omega\}$ with the property that for any compact set K in \mathbb{R}^2 there is an index $j(K)$ such that $A(j) \cap K = \emptyset$ for all $j \geq j(K)$.

For each positive real number r define the band $B(r) = \mathbb{R} \times [-2 + 1/r, 2 - 1/r]$. We claim there is a sequence of closed embeddings $F_n: \mathbb{R} \times [-2,2] \to \mathbb{R}^2$ ($n \in \omega$) such that $F_0 = f$ and for all $n \in \omega$:

1. $F_{n+1}(x) = F_n(x)$ for the points x of $B(n)$ and
2. $F_n(B(n)) = A(j)$ for all $j < n$.

If such a sequence exists, define $F: \mathbb{R} \times (-2,2) \to \mathbb{R}^2$ by $F(x) = \lim_{n \to \infty} F_n(x)$; then F extends $f|B(1)$ and is a diffeomorphism onto an open set which contains every 1-simplex.
of the triangulation T of $\mathbb{R}^2 - f(\mathbb{R} \times 0)$ and hence by simple-connectivity every point of \mathbb{R}^2. It follows easily that there is a diffeomorphism of \mathbb{R}^2 onto itself extending the original closed embedding $\mathbb{R} \to \mathbb{R}^2$.

The claim is proved by induction. Assume F_n has been obtained satisfying (2).

If $A(n) \cap F_n(B(n)) = \emptyset$, it is easy to construct a diffeomorphism f of \mathbb{R}^2 onto itself so that g is the identity on $F_n(B(n))$ and $g(A(n)) \subset F_n(B(n+1))$. In this case, take $F_{n+1} = g^{-1}F_n$. If $A(n) \cap F_n(B(n)) \neq \emptyset$, there is a finite sequence of closed subintervals $\{C_1, C_2, \ldots, C_r\}$ so that $A(n) - \bigcup\{C_i | i \leq r\}$ is contained in $F_n(B(n+\frac{1}{2}))$ and so that $C_i \cap F_n(B(n)) = \emptyset$ for $i \leq r$. By a preliminary diffeomorphism, if necessary, we may assume the set of endpoints of C_i is a subset of $F_n(B(n+\frac{1}{2}))$ for $i \leq r$. For each C_j let C'_j be an arc lying in $F(B(n+\frac{1}{2})) - F(B(n))$ so that $C_j \cup C'_j$ is a simple closed curve so that $C'_j \cap C_i = \emptyset$ for all $i \neq j$. Let $M = \{i \leq r | \text{if } j \neq i, C_i \text{ is not a subset of the bounded domain of } C_j \cup C'_j\}$. For each $i \in M$, let C''_i be an arc so that $C_i \cup C'_i \cup C''_i$ is a 0-curve with C_i as the cross-arc such that if $i \neq j$ are in M, then the 2-cells bounded by $C'_i \cup C''_i$ and $C'_j \cup C''_j$ are mutually exclusive and the 2-cells bounded by $C'_i \cup C''_i$ does not intersect $F_n(B(n))$. Let $M = \{i(1), i(2), \ldots, i(t)\}$. For each $i \in M$, let h_i be a diffeomorphism which is the identity on the complementary domain of $C'_i \cup C''_i$ and so that h_i takes the 2-cells bounded by $C'_i \cup C_i$ into $\text{Int} F_n(B(n+1))$. Let $h = h_i(1) \circ h_i(2) \circ \cdots \circ h_i(t)$ and let $F_{n+1} = h^{-1} \circ F_n$.

Notation. Throughout Lemma 2 and Theorem 3, we let
H = \{(0,y) | y \leq 0\}.

Definition. We will say that the set K is enveloped by the open set U if K \subseteq \text{int} U.

Lemma 3. Suppose that \{U(j)\} \in J is a sequence of open and connected subsets of \mathbb{R}^2, cl U(j+1) \subseteq U(j) and \bigcap_{j \in \omega} U(j) = \emptyset. Suppose further that:

A. \{p(j)\} \in J is a sequence of points so that p(j) \in U(n) with \{|p(j)|\} \in J increasing and unbounded.

B. \{N(j)\} \in J is a family of disjoint, infinite subsets of \omega.

Then there is a diffeomorphism g of \mathbb{R}^2 onto an open subset of \mathbb{R}^2 such that

1. \mathbb{R}^2 - g(\mathbb{R}^2) is H.
2. each point of H is a limit point of \{g(p(n))| n \in N(j)\} for each \(j \in \omega.
3. g(U_n) envelopes H for each n \in \omega.

Proof. We construct G in several steps:

Step 1. Let h_0 be a diffeomorphism from \{(x,0) | x \in \mathbb{R}\} into \mathbb{R}^2 so that h_0(n,0) = p(n) and h_0(\{(x,0) | x > n\}) \subseteq U(n). Let h_1 be the extension of h_0 taking \mathbb{R}^2 onto \mathbb{R}^2 given by Lemma 2. Let h = h_1^{-1}.

Step 2. Let f be a diffeomorphism from \mathbb{R}^2 onto \mathbb{R}^2 which leaves the set \{(x,0) | x \geq 0\} fixed and so that \{(x,y) | x > n\} \subseteq f(h(U(n))).

Step 3. Let S = \{s_i | i \in \omega\} be a countable dense subset of \mathbb{R}. Let \phi be a diffeomorphism from \mathbb{R}^2 into \mathbb{R}^2 so that
(a) \(\phi(x,y) = (x,y') \) (i.e., \(\phi \) is fixed on its first coordinate).

(b) If \(N(j) = \{j(1), j(2), \cdots\} \), then \(\phi(j(i) + 1, 0) = (j(i) + 1, s_i) \).

Thus, \(j(i) \) is the \(i \)th number in \(N(j) \) and \(\phi \circ f \circ h \) takes \(p(j(i)) \) onto \((j(i) + 1, s_i) \).

Step 4. Let \(\beta: \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by \(\beta(x,y) = (e^{-x}, y) \).

Step 5. Let \(\gamma: \{(x,y)|x > 0\} \to \mathbb{R}^2 - H \) be defined by

\[
\gamma(x,y) = (\sqrt{x^2 + y^2} \cos (\pi/2 + 2 \arctan (y/x)), \sqrt{x^2 + y^2} \sin (\pi/2 + 2 \arctan (y/x))).
\]

Finally \(g = \gamma \circ \beta \circ \phi \circ f \circ h \) is the desired diffeomorphism.

Theorem 2. Assuming the continuum hypothesis, there is a hereditarily separable, perfectly normal, analytic manifold that is not metrizable.

Proof. We will build a \(C^\infty \)-manifold; the existence of an analytic manifold will then follow from [K,P]. The construction is simply a "careful" version of the construction developed in [RZ]. Let \(D = D(1) = \{x \in \mathbb{R}^2 | |x| \leq 1\} \) and let \(D^0 = \text{int } D \). Let \(\{x_\alpha | \alpha \in \omega_1\} \) be an indexing of \(D - D^0 \) (using CH). Let \(\{H_\alpha | \alpha \in \omega_1\} \) be a collection of mutually exclusive copies of \(H \). Let \(X_0 = \mathbb{R}^2 \) and let \(X_\alpha = X_0 \cup (\bigcup_{\beta < \alpha} H_\beta) \) and using CH, let \(\{A_\alpha | \alpha \in \omega_1\} \) be an indexing of the countable subsets of \(X \) so that \(A_\alpha \subset X_\alpha \). Let \(f_0 \) be a diffeomorphism from \(\mathbb{R}^2 \) onto \(D^0 \) and let \(F \) be the function defined by

\[
f(x) = \begin{cases}
 f_0(x) & \text{if } x \in \mathbb{R}^2 \\
 x_\alpha & \text{if } x \in H_\alpha
\end{cases}
\]

and let \(f_\alpha = f|X_\alpha \). We will inductively construct a
differentiable structure \mathcal{D}_α on X_α such that:

1. $(X_\alpha, \mathcal{D}_\alpha)$ is diffeomorphic to \mathbb{R}^2: i.e. \mathcal{D}_α contains a chart (X_α, ϕ_α) with $\phi_\alpha(X_\alpha) = \mathbb{R}^2$.

2. If $\beta < \alpha$, then $(X_\beta, \phi_\beta) \in \mathcal{D}_\alpha$.

3. If $\gamma \leq \beta < \alpha$, $x \in H_\beta$ and x_β is a limit point of $f(A_\alpha)$ in D, then x is a limit point of A_α in (X_α, T_α), where T_α is the topology on X_α given by \mathcal{D}_α.

Let \mathcal{D}_0 be the usual differential structure on $X_0 = \mathbb{R}^2$ generated by the atlas consisting of the single chart $(X_0, \text{identity map})$.

Suppose we have \mathcal{D}_α satisfying (1)-(3) for all $\alpha < \lambda < \omega_1$.

Case I. λ is a limit ordinal: Let \mathcal{D}_λ be the differential structure generated by $\{(X_\theta, \mathcal{D}_\theta) \mid \theta < \lambda\}$. That $(X_\lambda, \mathcal{D}_\lambda)$ is diffeomorphic to \mathbb{R}^2 is given by Theorem 1.

Case II. $\lambda = \alpha + 1$: For each $n \in \omega$, let $U_n = f^{-1}_\alpha(D_{1/n}(x_\alpha))$, where $D_{1/n}(x_\alpha) = \{x \in D \mid d(x, x_\alpha) < 1/n\}$.

Then $\{U_n\}$ is a nested sequence of open sets in X_α such that $\bigcap_{n \in \omega} U_n = \phi$. Let $\{N_j\}_{j \in \omega}$ be a disjoint family of infinite subsets of ω and fix a 1-1 map $i: \omega + 1 \rightarrow \omega$. For each $n \in \omega$, choose $p_n \in U_n$ so that if $\beta \leq \alpha$ and x_α is a limit point of $f(A_\beta)$ in D, then $p_n \in A_\beta \cap U_n$ for all $n \in N_i(\beta)$.

Let ϕ be the diffeomorphism from $(X_\alpha, \mathcal{D}_\alpha)$ onto \mathbb{R}^2 given by our induction and let g be the diffeomorphism given by Lemma 3 from \mathbb{R}^2 into \mathbb{R}^2 so that (1) $\mathbb{R}^2 - g(\mathbb{R}^2)$ is H, (2) each part of H is a limit point of $\{g(\phi(p(k))) \mid k \in N_j\}$ for each $j \in \omega$, and (3) $g(U_n)$ envelopes H for each $n \in \omega$. Let $\mathcal{D}_{\alpha+1}$ be the differential structure on $X_{\alpha+1}$ generated by the
atlas $\mathcal{D}_a \cup \{(X_{a+1}, \phi_{a+1})\}$ where $\phi_{a+1}|_{X_a} = g \circ \phi_a|_{\mathcal{H}_a}$ is the identification of \mathcal{H}_a with H.

As in [RZ], the construction of \mathcal{D}_{a+1} is such that f_{a+1} is continuous and our induction is complete. We will let \mathcal{D} be the atlas on X generated by $\bigcup_{a<\omega_1} \mathcal{D}_a$ and let T be the topology on X given by \mathcal{D}. The argument that (X,T) is hereditarily separable, perfectly normal, but not Lindelöf follows exactly as in [R,Z].

Note. As with the Rudin-Zenor manifold, we can, using ϕ, obtain a differentiable, perfectly normal, countably compact, hereditarily separable, non-metrizable manifold. It remains an open question if there is a complex analytic, perfectly normal, non-metrizable manifold.

References

