Research Announcement:

THE SPAN OF MAPPINGS AND SPACES

by

A. Lelek
THE SPAN OF MAPPINGS AND SPACES

A. Lelek

Let X, Y be metric spaces, and let $f: X \to Y$ be a mapping. By p_1 and p_2 we denote the standard projections of the product $X \times X$ onto X, i.e., $p_1(x,x') = x$ and $p_2(x,x') = x'$ for $(x,x') \in X \times X$. The span $\sigma(f)$ of the mapping f is the least upper bound of the set of real numbers α with the following property: there exist connected sets $C_\alpha \subseteq X \times X$ such that $p_1(C_\alpha) = p_2(C_\alpha)$ and $\alpha < \text{dist}[f(x),f(x')]$ for $(x,x') \in C_\alpha$ (see [2], p. 99). The span $\sigma(X)$ of the space X is the span of the identity mapping on X (see [4], p. 209). The purpose of the present paper (1) is to announce some results which relate to spans of mappings and have a number of interesting consequences for spans of spaces. A complete version will be published elsewhere.

The proofs of the following four propositions are rather straightforward.

1. If $f: X \to Y$, then $0 \leq \sigma(f) \leq \sigma(Y) < \text{diam } Y$.

2. If $f: X \to Y$ and X is compact, then
 \[\inf \{d[f^{-1}(y),f^{-1}(y')] : \sigma(f) < \text{dist}(y,y')\} \leq \sigma(X). \]

3. If $f: X \to Y$, X is compact and $0 < \epsilon \leq \text{diam } Y$, then
 \[0 < \inf \{d[f^{-1}(y),f^{-1}(y')] : \epsilon \leq \text{dist}(y,y')\}. \]

4. If $f: X \to Y$ and X is compact, then $\sigma(X) = 0$ implies $\sigma(f) = 0$.

(1) This paper was presented during the Thirteenth Spring Topology Conference at Ohio University, on March 17, 1979.
Note that proposition 4 follows from propositions 2 and 3. By \(S \) we denote the unit circle on the plane, and by \(T \) we denote the union of two tangent circles each of radius \(1/2\pi \). We consider \(T \) to be a metric space with the geodesic metric \(\rho \). In other words, \(\rho(y,y') \) is the length of the shortest arc joining the points \(y \) and \(y' \) in \(T \) for \(y,y' \in T \), so that the diameter of \(T \) is one. We say that a mapping is essential if it is not homotopic to a constant mapping.

5. **Lemma.** If \(f: S \to T \) is an essential mapping and \(0 < \varepsilon < 1/2 \), then there exist a continuum \(K \) and two surjective mappings \(\phi, \psi: K \to S \) such that

\[
\rho[f\phi(x), f\psi(x)] = \varepsilon \quad (x \in K).
\]

6. **Theorem.** If \(f: X \to T \) is an essential mapping, \(X \) is compact, \(\dim X \leq 1 \) and \(0 < \varepsilon < 1/2 \), then there exists a continuum \(K \subseteq X \times X \) such that \(\rho_1(K) = \rho_2(K) \) and \(\rho[f(x), f(x')] = \varepsilon \) for \((x, x') \in K \).

The following four statements are corollaries to theorem 6.

7. If \(f: X \to T \) is an essential mapping, \(X \) is compact and \(\dim X \leq 1 \), then \(\sigma(f) \geq 1/2 \).

8. If \(f: X \to T \) is an essential mapping, \(X \) is compact, \(\dim X \leq 1 \) and \(0 < \varepsilon \leq 1/2 \), then

\[
0 < \text{Inf} \{ d[f^{-1}(y), f^{-1}(y')] : \rho(y, y') = \varepsilon \} \leq \sigma(X).
\]

9. If \(X \) is compact and \(\sigma(X) = 0 \), then each mapping \(f: X \to T \) is inessential.
10. If X is a continuum and $\sigma(X) = 0$, then X is tree-like.

It is known [4] that continua of span zero are one-dimensional if non-degenerate. By corollary 9, the mappings defined on them and having values in one-dimensional polyhedra [3] are all inessential, and then corollary 10(2) can be obtained via a well-known characterization of tree-like continua [1]. Also, notice that $\sigma(T) = \frac{1}{2}$. Hence, by proposition 1 and corollary 7, we get $\sigma(f) = \sigma(T)$ for all essential mappings f of one-dimensional compact metric spaces into T. It remains as an open problem to determine a wider class of mappings $f: X \to Y$ such that $\sigma(f) = \sigma(Y)$.

References

University of Houston
Houston, Texas 77004

\[\text{A recent result of James F. Davis establishes the equality between the span and the semi-span [5] for a certain class of continua. Using the tree-likeness of continua of span zero (corollary 10), it implies, among other things, that they have the fixed point property.}\]