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ON A THEOREM OF CHABER 1,2 

Robert L. Blair 

1. Introduction 

For 5 a collection of subsets of a topological space
 

X and x E X, set S(x) = {S E 5: xES}, I(x,S) = nS(x),
 

st (x,S) uS(x), and ord(x,S) = IS(x) I. (lEI denotes the
 

cardinal of the set E. Cardinals are initial ordinals.)
 

The following theorem is due to Chaber:
 

1.1. Theorem (Chaber [6, 3.B]). Let lj be an open
 

cover of a countabZy compact space X. If there exists an
 

open cover Un<wYn of X such that, for every x E X,
 

n{I(X'§n): n < wand 0 < ord(x'§n) ~ w} C U for some
 

U E lj, then lj contains a finite subcover.
 

In this note we first prove a theorem (2.4) that
 

quickly yields 1.1, and then obtain several results closely
 

related to 1.1. Some of the latter generalize the main
 
... 

results of [3]. All of our results have cardinal generali ­

zations, but for simplicity only the countable versions of
 

these more general theorems will be considered here.
 

2. Closed-Completeness of 68 -Penetrable Spaces 

To state our results succinctly, we shall say that an 

open cover Un<wYn of a topological space X is a a-penetration 

(resp. oS-penetration) of a cover lj of X if, for every 

lThis research was supported in part by Ohio Univer­

sity Research Committee Grant No. 535.
 

20edicated to Casper Goffman on his 66th birthday. 
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x E X, n{I(X,y): n < wand 0 < ord(x,y ) < w} c U for n n 

some U E 0 (resp. n{I(x,y ): n < wand 0 < ord(x,y ) < w}n n -

c U for some U EO), and that X is e-penetrabZe (resp. 

oe-penetrabZe) if every open cover of X has a e-penetration 

(resp. oe-penetration). 

2.1. Remarks. (a) A cover ~ of X is separating if 

for each x, y E X with x ~ y there exists G E ~ with 

x E G and y I- G; and a cover U y of X is e-separating
n<w n
 

[12, 3.1] if for every x E X, n{ I (x, ~n) : 0 n < wand 0 <
 

ord(x,y) < w} = {x}. Obviously each point-countable
n 

separating open cover of X is a oe-penetration of every 

cover of X, and each e-separating open cover of X is a 

e-penetration of every cover of X. 

(b) A weak e-refinement (resp. weak oe-refinement) of 

a cover 0 of X is an open refinement U < ~ of 0 such thatn wJn 

X Un<w{x E X: 0 < ord(x'~n) < w} (resp. X = Un<w{x E X: 

o < ord (x,~ ) < w}) (see [2] and [18]). It is easily seen n -

that (*) every weak e-refinement (resp. weak oe-refinement) 

of U is a e-penetration (resp. oe-penetration) of U. The 

converse of (*), however, is false: Let X be an heredi­

tarily separable non-Lindelof space obtained by refining 

the usual topology of R (see [11] and [14]); it suffices to
 

observe that R (and hence X) has a e-separating open cover
 

but that, by [3, 3.16], X is not weakly oe-refinable (i.e.
 

some open cover of X has no weak oe-refinement). But (*)
 

has a partial converse; this is the substance of 2.2
 

below.
 



35 TOPOLOGY PROCEEDINGS Volume 5 1980 

By a closed ultrafilter on X we mean a maximal filter 

in the lattice of closed subsets of X. A closed ultra­

filter J on X is countably complete if nA E J for every 

A c J wi~h IAI ~ w, and J is fixed (resp. free) if nJ ~ ~ 

(resp. nJ = ~). A space X is closed-complete (= a-real­

compact [7]) if every countably complete closed ultrafilter 

on X is fixed. (If "closed" is replaced by "Borel" in the 

preceding definitions, one obtains the definition of a 

Borel-complete space; see [10] and [3, p. 20]. We note 

that Borel-completeness implies closed-completeness [10, 

1.1] .) 

2.2. Lemma. If J is a countably complete free 

closed ultrafilter on X and if ~ = Un<w~n is a 8-penetra­

tion (resp. o8-penetration) of U= {X - F: F E J}, then 

~ has a subcover that is a weak 8-refinement (resp. weak 

o8-refinement) of U. 

Proof. We write the proof for the case in which ~ is 

a 8-penetration of u. For each n < w, let

A = {x E X: ord (x,.y ) < wand 
n n 

X - G E J for some G E .y (x)}.
n
 

If there exists y E X - set
Un<wAn' 

K {n E w: 0 < ord(Y'~n) < w}, 

M { (n,G) : n E K and G E ~n(Y)}. 

Then for each (n,G) E M we have ord(Y'~n) < w, G E ~n(Y)' 

and Y ~ An' and thus X - G t Ji hence F(n,G) C G for some 

F(n,G) E J. Then nnEK(nGEyn(y)F(n,G» E J. But 

nnEK(nGEyn(y)F(n,G» c nnEK1(y,yn ) c U 
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for some U E 0, a contradiction, and we conclude that 

x = Un<wAn. Now for each n < wand each x E An' there is 

G(x,n) E y (x) with G(x,n) E U. For each n < w, let 
n 

y* = {G (x,n): x E A }, and let §* = U y*. Note that if 
n n n<w n 

x E X, then x E An for some n. Then x E G(x,n) E §~ and 

IY*(x) / < I§ (x) I < w, so §* is a weak a-refinement of U. n - n 

2.3. Lemma (cf. [17, Chap. 1, Theorem 18]). Let 

A c X and let ~ be a collection of open subsets of X such that 

cl A c U§. Then there exists DcA such °that: 

(1) If x, Y E D with x 1 y, then x t st(y,§). 

(2) A C U Dst(x,§).
xE 

(3) {cl{x}: xED} is discrete in X. 

Proof. By Zorn's lemma, there exists DcA maximal 

with respect to (1), and then D must satisfy (2). If 

lJ = {cl{x}: xED} is not discrete in X, there is p E cl A 

such that every neighborhood of p meets at least two dis­

tinct members of lJ. Then pEG for some G E §, so there 

exist x, y E D with x 1 Y such ~hat G n cl{x} 1 ~ and 

G n c1{y} ~~. But then x E st(y,§), contrary to (1). 

The discreteness character ~(X) of a space X is W-K, 

where K = sup{/lJl: lJ is a discrete collection of nonempty 

closed subsets of X} [13, § 3] • (For a Tl-space X, ~ (X) 

is the extent of X [8, 1.7.12] and X is wI-compact (i.e. 

every closed discrete subset of X is countable) if and 

only if ~ (X) = W [13, 3.2].) 

2.4. Theorem. If ~(X) = wand if J is a free closed 

ultrafilter on X such that {X - F: FE]} has a 
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oS-penetration, then J is not countably complete. 

Proof. If J is countably complete, then, by 2.2, 

{X - F: F E J} has a weak oS-refinement U y, and there
n<w n 

exists n < w such 'that A = {x E X: 0 < ord(x,y ) ~ w} meets n 

every member of J. Since A c uy , we have F* C U~ for n :In 

some F* E J. By 2.3 there exists DcA n F* with A n F* c 

U EDst(x,~ ) and IDI < ~(X) = w. Then W= U D~ (x) is x n xE n 

countable, and for each W E W there is F(W) E J with 

W c X - F (W). But then A n F* n (~EtI (W) ) ~, a contra­

diction. 

We obtain Chaber's theorem as follows: 

Proof of 1.1. If the conclusion fails, then {X - U: 

U E lj} c J for some (free) closed ultrafilter J on X, and 

by the hypothesis of 1.1, {X - F: F E J} has a oS-pene­

tration. But since X is countably compact, ~(X) = wand 

J is countably complete. This contradicts 2.4. 

The following generalizes [3, 3.2]: 

2.5. Corollary. If ~(X) w, then the following 

are equivalent: 

(1) X is closed-complete. 

(2) If J is any free closed ultrafilter on X, then 

{X - F: F E J} has a oS-penetration. 

Proof. If X is closed-complete and J is a free 

closed ultrafilter on X, then n F = ~ for some sequence
n<w n 

(F) of members of J, and clearly U {X - F } is a 
n n<w n<w n 

S-penetration of {X - F: F E J}. The converse is immedi­

ate from 2.4. 
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A space X is isocompact [1] if every countably compact 

closed subset of X is compact. We shall say that X is 

iso-closed-complete (resp. iso-Lindelof) if every closed 

subset of X with countable discreteness character is closed­

complete (resp. Lindelof). Clearly every iso-Lindelof 

space is iso-closed-complete, and since countably compact 

closed-complete spaces are compact [3, 3.6], every iso­

closed-complete space is isocompact. Since" o6-penetra­

bility is closed-hereditary, Chaber's theorem evidently 

implies that o6-penetrable spaces are isocompact. More 

generally: 

2.6. Corollary. Every o6-penetrable space is iso­

closed-complete. 

2.7. Remarks. The example of 2.l(b) shows that 

hereditarily 6-penetrable regular Tl-spaces need not be 

iso-LindelBf. For an example of an isocompact space that 

is not iso-closed-complete, let X be the subspace of w2 

obtained by deleting all nonisolated points having a 

countable base (see [9, 9L]). Then every countably com­

pact closed subset of X is finite (so X is isocompact), 

and X is wl-compact. But X is normal, countably paracom­

pact, and nonrealcompact, and thus not closed-complete 

[7,1.10]. (This example was pointed out to the author by 

Eric van Douwen.) 

It follows from 2.5 that an wI-compact space with a 

point-countable separating open cover is closed-complete. 

But in this case a stronger result is available: 
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2.8. Theorem. If X is an wI-compact space with a
 

point-countable separating open cover, then X is Borel­

complete.
 

Proof. Let Ube a point-countable separating open
 

cover of X and let J be a countably complete Borel ultra­

filter on X. Suppose that for each x E X there exists
 

U E U(x) with X - U E J. Let ~ = {U : x EX}. By 2.3
 x x x 

there exists D eX with X = UXEDst (x,~) and IDI < fl (X) = w. -


But then is a countable cover of X, which con-
UXED~(x) 

tradicts the countable completeness of J. Thus there
 

exists x E X such that X - U i J for every U E U(x), and
 

hence for every U E U(x) there is F(U) E J with F(U) e U.
 

Then n{F(U): U E U(x)} e nU(x) = {x}, ~nd since U(x) is
 

countable, we have {x} E J. Thus x E nJ.
 

3. Closed-Completeness of a-Penetrable Spaces 

The lattice of closed subsets of a space X is atomic 

if each nonempty closed subset of X contains a minimal 

nonempty closed set. (This holds, for example, if X is 

essentially Tl , i.e. for each x, y E X, either cl{x} n 

cl{y} = ~ or cl{x} = cl{y}.) The following generalizes 

[3, 4.1]: 

3.1. Theorem. If the lattice of closed subsets of
 

x is atomic, then the following are equivalent:
 

(1) X is closed-complete. 

(2) The cardinal of each discrete collection of
 

closed subsets of X is Ulam-nonmeasurable, and if J is
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any free closed ultrafilter on X, then {X - F: FE]} has 

as-penetration. 

Proof· (1) :::;> (2): Let lJ be a discrete collection 

of nonempty closed subsets of Xi we may assume that each 

D E lJ is minimal. For each D E lJ, choose x E D, letD 

E {xD: D E lJ}, and let Cbe a countably complete ultra­

filter on the (discrete) space E. Let c* = {F: F is closed 

in X and F nEE C}. The minimality of the members of 

lJ allows one to conclude that C* is a countably complete 

closed ultrafilter on X, and hence, by (1), there exists 

y E nC*. Since ulJ E C*, y E D for some D E lJ, and it 

follows that xD E nC. Thus E is closed-complete, and hence 

IlJl = lEI is U1am-nonmeasurable [9, 12.2]. Moreover, if 

] is a free closed ultrafilter on X, then {X - F: FE]} 

has a e-penetration as in the proof of 2.5. 

(2) ~ (1): Suppose there is a countably complete 

free closed ultrafilter J on X. By (2) and 2.2, {X - F: 

FE]} has a weak e-refinement U ~, and there existsn<w.7n 

n < w such that A = {x E X: 0 < ord(x,§ ) < w} meets every
n 

member of J. Then F* c U§n for some F* E J, and by 2.3 

there exists DcA n F* such that: 

(a) if x, y E D with x ~ y, then x f st(Y'§n)i 

(b) A n F* c UXEDst("X'§n) i 

(c) {c1{x}: xED} is discrete in X. 

By (c) and (2), IDI is U1am-nonmeasurab1e, and a contra­

diction follows precisely as in the proof of (b) ~ (a) 

of [3, 4.1]. 
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3.2. Remarks. (a) When X is T the cardina~ityl , 

condition of 3.1(1) can be replaced by the requirement 

that each closed discrete subset of X has Ulam-nonmeasura­

ble cardinality. 

(b) The atomicity hypothesis cannot be omitted in the 

implication (1) ~ (2) of 3.1: Let Y be the space (w,]), 

where] = {w} U {[O,n): n < w}, and for K an arbitrary 

(perhaps Ulam-measurable) cardinal, let X be the topologi­

cal sum L~<K(Y x {~}). For each n < w, let F L~<K([n,~)n 

x {~}), and note that if J is any closed ultrafilter on 

X, then F E J. Since nn<wFn = ~, X is (vacuously)n 

closed-complete. 

3.3. Corollary. If X is T and 8-penetrable (in
l 

particular, if X has a 8-separating open cover), and if 

the cardinal of each closed discrete subset of X is Ulam­

nonmeasurable, then X is closed-complete. 

A space X is cb [16] if for each decreasing sequence 

(Fn)n<w of closed subsets of X with nn<wFn ~ there is a 

sequence (Zn)n<w of zero-sets of X with Zn ~ F for eachn 

nand nn<wZn ~. Every Tychonoff closed-complete cb-space 

is realcompact [7, 1.10], and every normal countably para-

compact space is cb [16], so we have 3.4 and 3.5: 

3.4. Corollary. If X is a Tychonoff 8-penetrable 

cb-space such that each closed discrete subset of X has 

Ulam-nonmeasurable cardinality, then X is realcompact. 
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3.5. CoroZlary. If X is a normaZ countabZy paracom­

pact 8-penetrabZe Tl-space such that each cZosed discrete 

subset of X has UZam-nonmeasurabZe cardinaZity, then X is 

reaZcompact. 

3.6. Remarks. Corollaries 3.4 and 3.5 generalize
 

Katetov's classical result on realcompactness of paracom­

pact spaces ([ 15]; cf. [9, 15. 20] ) . (For references to
 

earlier generalizations, see [3].) We note that in 3.4
 

(resp. 3.5) "cb" (resp. "countably paracompact") cannot
 

be omitted (see the examples in [3, 4.9(d),(e)]).
 

4. Weakly Separating Covers 

We shall say that a cover ~ of a space X is weakZy 

separating if for each x, y E X with x ~ y there is a
 

finite subcollection A of ~ with x E int(uA) and y ~ uA.
 

4.1. Theorem. Assume X has countabZe tightness 

[8, 1.7.13]. If X is wI-compact and has a point-countabZe 

weakZy separating cover, then X is BoreZ-compZete. 

4.2. Remarks. Point-countable weakly separating 

covers are studied in detail in [5] (without being named) . 

Obviously every separating open cover of X is weakly 

separating, so 4.1 implies 2.8 for spaces of countable 

tightness. We do not know, however, whether there is an 

wI-compact space of countable tightness with a point­

countable weakly separating cover but with no point-

countable separating open cover. (If the requirement of 

countable tightness is omitted, there is such a space 
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[4, 4.4], and if that of wI-compactness is omitted, there 

is again such a space (in fact, a locally compact Moore 

space; see [5, Footnote 4]). On the other hand, if X has 

a a-locally finite separating closed cover [ (cf. [5, 5.3]), 

and if X is wI-compact, then [ is countable and {X - E: 

E E [} is a countable separating open cover of X. We also 

do not know whether the hypothesis of countable tightness 

can be omitted in 4.1. 

Before proving 4.1, we systematize and elaborate 

certain techniques drawn from [5]. Lemma 4.3 generalizes 

a classical result on open covers [17, Chap. 1, Theorem 181, 

and 4.5 improves [5, 7.11. (A more general version of 

4.3 (analogous to 2.3) can be proved, but will not be 

needed here.) 

Denote the power set of X by P(X), and if E is a set, 

let [E]<w {F E P(E): IFI < w}. For A E [P(X)]<w, set 

M(A) {x E int (uA): x lint (uB) if 

B c A, B -:; A}; 

and if ~ c [P(X)]<w and x E X, set 

~<x) = {int(uB): B c A for some A E ~ and 

x E M(B)} 

and 

neb(x,~) = u~<x). 

(We call neb(x,~) the nebula of x with respect to~. Note 

that if U is an open collection in X, then neb(x, [U]<w) 

st(x,U).) The following is easily verified: 
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4.2. Lemma. (1) If A E [P(X)]<w, then int(uA) 

u{M(B): B c A}. 

(2) If ~ c [P(X)]<w and X u{int(uA): A E ~}, then 

x E neb(x,~) for every x E x. 

4.3. Lemma. Let ~ c [P(X)]<w with X = u{int(uA): 

A E ~}, and Zet < be a weZZ-ordering of x. Then there is 

a subset D of X suah that: 

(1) If x, y E D with x < y, then y t neb(x,~). 

(2) X = UXEDneb(x,~). 

Moreover, if X is T then D is aZosed disarete in x.1, 

Proof. By Zorn's lemma, there is a subset D of X 

maximal with respect to (1) and (2'): if z E X and z < y 

for some y E D, then z E UXEDneb(x,~). If D fails to 

satisfy (2) and u is the first element of X - U Dneb(x,~),
xE 

then u ¢ D (by 4.2(2» while D U {u} satisfies (1) and 

(2'), a contradiction. Thus D satisfies (1) and (2). If 

X is Tl and if D has a limit point in X, then ID n int(uA) I 
> W for some A E~. By 4.2(1), ID n M(B) I > W for some 

B c A. Choose x, y E D n M(B) with x < y. Then int(uB) E 

~(x>, so Y E M(B) c int(uB) c neb(x,~), a contradiction. 

Thus D is closed discrete. 

4.4. Lemma. Assume X has aountabZe tightness. If 

P is a point-aountable aolZeation of subsets of X, if 

~ c [P]<w, and if x E X, then ~<x) is aountable. 

Proof. This is an immediate consequence of [5, 2.2]. 

4.5. Lemma. Let X be an wl-aompaat Tl-spaae with 

aountabZe tightness. If P is a point-aountable aoZZeation 
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of subsets of X and if 0 is a cover of X with 0 c {int (uA) : 

A E [7'] <w} 3 then 0 has a countab le subcover. 

Proof. Let ~ = {A E [7']<w: int(uA) c U for some 

U E O} and note that X = u{int(uA): A E ~}. By 4.3, there 

is a closed discrete, hence countable, subset D of X such 

that X = UXEDneb(x,~). Thus, by 4.4, UXED~(x) is a counta­

ble refinement of 0, and the result follows. 

Proof of 4.1. Let 7' be a point-countable weakly 

separating cover of X and let J be a countably complete 

Borel ultrafilter on X. Clearly X is T • If for each
l 

x E X there exists U E [7']<w(x) such that X - U E J, then,x x 

by 4.5, the cover {ux: x E X} of X has a countable sub-

cover; since J is countably complete, this is a contradic­

tion. Thus there exists x E X such that X - U i J for 

<w 'i) <w .all U E [P] (x), and hence for all U E [t] (x) there 1S 

F(U) E J with F(U) c U. Since 7' is weakly separating, and 

in view of 4.2(1), we have n{F(U): U E [7']<w(x)} c 

n[7'] <w(x) {x}. But [7'] <w(x) is countable by 4.4, and 

hence {x} E J. Thus x E nJ. 
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