IRREDUCIBLE SPACES AND PROPERTY

\(b_1 \)

by

J. C. Smith
1. Introduction

In an unpublished paper [8] J. Chaber introduced a topological property which he called property b_1. Chaber showed that this property plays an important role in the study of metacompact and θ-refinable spaces. Since these classes of spaces are irreducible, it is natural to investigate the relationship between property b_1 and irreducibility. A topological space X is irreducible if every open cover of X has an open refinement which is a minimal cover of X. Studies of irreducible spaces have been made by R. Arens and J. Dugundji [1], J. Boone [3,4], U. Christian [9,10], the author [17,18,19], and J. Worrell and H. Wicke [21].

In this paper we investigate property b_1 and its natural variations. In particular we show in Section 2 that property b_1 is actually stronger than the notion of weakly θ-refinable but a weaker version of property b_1 is implied by weakly θ-refinable. Also in Section 3 we show that another weaker version of property b_1 always implies irreducibility. Application of these results are given in Section 4 where several unanswered questions are solved. A number of new problems are also included.

The following notions and definitions are included for the benefit of the reader.
Notation. Let \(J = \{ F_\alpha : \alpha \in A \} \) be a collection of subsets of a space \(X \). We will denote \(\bigcup F_\alpha \) by \(\cup_j \).

Definition 1.1. A space \(X \) is called weakly \(\theta \)-refinable provided every open cover \(\mathcal{G} \) of \(X \) has a refinement \(\cup_{i=1}^\infty \mathcal{G}_i \) satisfying:

(i) each \(\mathcal{G}_i = \{ G(\alpha, i) : \alpha \in A_1 \} \) is a collection of open subsets of \(X \),

(ii) for each \(x \in X \), there exists an integer \(n(x) \) such that \(0 < \text{ord}(x, \mathcal{G}_n(x)) < \infty \),

(iii) if \(x \in X \), then \(x \in G^*_i \) for only finitely many \(i \), where \(G^*_i = \bigcup \mathcal{G}_i \).

Naturally, a cover \(\cup_{i=1}^\infty \mathcal{G}_i \) satisfying (i)-(iii) above is called a weak \(\theta \)-cover. Spaces satisfying only (i) and (ii) are called weakly \(\theta \)-refinable and were introduced by Bennett and Lutzer [2].

Definition 1.2. A space \(X \) is called \(\theta \)-refinable if every open cover \(\mathcal{G} \) of \(X \) has a refinement \(\cup_{i=1}^\infty \mathcal{G}_i \) where each \(\mathcal{G}_i \) is an open cover of \(X \) and property (ii) above is satisfied.

The following property was introduced by J. Chaber in an unpublished paper [8]. This property was shown to play an important role in the study of \(\theta \)-refinable and metacompact spaces as stated in the next theorem.

Definition 1.3. A space \(X \) is said to have property \(b_1 \) if each open cover \(\mathcal{U} \) of \(X \) can be refined by a cover \(J = \cup_{i=1}^\infty J_i \) such that,
\(J \) is a locally finite collection of closed sets in \(X - \bigcup_{k<n} [uJ_k] \).

Theorem 1.4. (1) A space \(X \) is metacompact iff \(X \) is almost expandable and has property \(b_1 \).

(2) A space \(X \) is \(\theta \)-refinable iff \(X \) is almost \(\theta \)-expandable and has property \(b_1 \).

Properties of almost expandable and almost \(\theta \)-expandable spaces are discussed in [8,13,14,16,17,20].

Definition 1.5. A collection \(J = \{F_a : a \in A\} \) is called hereditarily closure-preserving (HCP) provided for every \(B \subseteq A \) and every collection \(\{H_\beta : \beta \in B\} \), where \(H_\beta \subseteq F_\beta \), we have that \(\bigcup_{\beta \in B} H_\beta = \bigcup_{\beta \in B} H_\beta \).

Definition 1.6. A space \(X \) is said to have property \(B(D(\text{resp.} LF, HCP),a) \) if each open cover \(U \) of \(X \) has a refinement \(\bigcup J_s \), such that for each \(s < a \)

\begin{enumerate}
 \item \(J_s \) is a discrete (resp. locally finite, HCP) collection of closed sets in \(X - \bigcup_{s' < s} [uJ_{s'}]\).
 \item \(\bigcup_{s' < s} [uJ_{s'}] \) is closed in \(X \).
\end{enumerate}

Remark. Note that property \(B(LF, \omega_0) \equiv \text{property } b_1 \) according to Chaber [8]. It should be clear that property \(B(D,a) \Rightarrow \text{property } B(LF,a) \Rightarrow \text{property } B(HCP,a) \) for each \(a \).

Definition 1.7. A collection \(V \) is a "partial" refinement of a collection \(U \) provided each member of \(V \) is contained in some member of \(U \). (It need not be the case that \(UV = UU \).)
2. Property B(D, ω₀) and Weakly $\overline{\theta}$-Refinable Spaces

In order to begin our study it is interesting to note that property B(D, ω₀) is stronger than the property of weak $\overline{\theta}$-refinability.

Theorem 2.1. If a space X has property B(D, ω₀) then X is weakly $\overline{\theta}$-refinable.

Proof. Let \mathcal{U} be an open cover of X. Then \mathcal{U} has a refinement $\mathcal{U} \supseteq \mathcal{J}_i$ satisfying (1) and (2) in Definition 1.6 above. We now construct the sequence $\{\mathcal{G}_i\}_{i=1}^\infty$ satisfying properties (i)-(iii) of Definition 1.1 above.

Now for each $a \in A$ and each $n < \omega_0$, choose $U(a,n) \in \mathcal{J}_n$. Define $G(a,n) = U(a,n) - \bigcup F(a,n) - \bigcup_{k<n} [U_J^k]$ for each $a \in A$ and $n < \omega_0$ and let $\mathcal{G}_n = \{G(a,n): a \in A\}$. It is clear that each \mathcal{G}_n is a collection of open subsets of X. Furthermore if $x \in X$ choose $n(x)$ to be the first integer for which x belongs to some member $F(a,n(x))$ of $\mathcal{J}_n(x)$. Then x belongs to only $G(a,n(x)) \in \mathcal{G}_n(x)$ and x belongs to no member of \mathcal{G}_k for $k > n(x)$. Therefore $\bigcup_{i=1}^\infty \mathcal{G}_i$ satisfies properties (i)-(iii) in Definition 1.1 above so that X is weakly $\overline{\theta}$-refinable.

Remark. The author conjectures that property B(D, ω₀) and weakly $\overline{\theta}$-refinability are not equivalent. In fact, the author conjectures that there is a space X which is weakly $\overline{\theta}$-refinable and has property B(D, ω₀+1) but does not
have property $B(D,\omega_0)$. Such examples however appear to be somewhat complicated.

Theorem 2.2. Every weakly θ-refinable space has property $B(D,(\omega_0)^2)$.

Proof. Let $\bigcup_{i=1}^{\omega}\mathcal{G}_i$ be a weak θ-cover of X where $\mathcal{G}_i = \{G(\alpha,i) : \alpha \in A\}$. Let $G_k^* = \bigcup_{i=1}^{\omega}\mathcal{G}_k$ for each k and $\mathcal{G}^* = \bigcup_{k=1}^{\omega}G_k^*$. Define for each $i \geq 1$ and $j \geq 1$,

$$\mathcal{P}(i,j) = \{x \in X : \text{ord}(x,\mathcal{G}^*) < i \text{ or ord}(x,\mathcal{G}^*) = i \text{ and } 0 < \text{ord}(x,G_k) \leq j \text{ for some } k\}.$$

We show that for each (i,j) there exists a sequence of collections $\{\mathcal{J}_k\}_{k=1}^{\omega}$ such that \mathcal{J}_k is a discrete closed collection in $X - \mathcal{P}(i,j)$. Since $X = \bigcup_{i=1}^{\omega}\bigcup_{j=1}^{\omega}\mathcal{P}(i,j)$ and $\mathcal{P}(i,j+1) = \mathcal{P}(i,j) \cup [\bigcup_{k=1}^{\omega}[\bigcup_{j=1}^{\omega}\mathcal{J}_k]]$ the proof will be complete.

Let i and j be fixed.

Define, $H_i = \{x \in X : \text{ord}(x,\mathcal{G}^*) \leq i\}$.

$$B_k = \{B \subseteq A_k : |B| = j + 1\}.$$

$$S_k = \{x \in X : 0 < \text{ord}(x,\mathcal{G}_k) \leq j + 1\}.$$

Now for each k and each $B \in B_k$ let $F(B,k) = [\bigcap_{\alpha \in B}G(\alpha,k)] \cap [G_k^* \cap H_i \cap S_k]$ and $\mathcal{J}_k = \{F(B,k) : B \in B_k\}$.

We assert that \mathcal{J}_k is a discrete closed collection in $X - \mathcal{P}(i,j)$. Let k be fixed and $x \in X - \mathcal{P}(i,j)$. Then $\text{ord}(x,\mathcal{G}^*) \geq i$.

(1) If $\text{ord}(x,\mathcal{G}^*) > i$, then $X - H_i$ is a neighborhood of x which intersects no member of \mathcal{J}_k.

(2) Suppose $\text{ord}(x,\mathcal{G}^*) = i$.

Case I. If $x \notin G_k^*$, then x belongs to exactly i other members $\{G^*_\alpha : \alpha = 1,2,\cdots,i\}$ of \mathcal{G}^*. Hence $\bigcap_{\alpha=1}^{i}G^*_\alpha$ is a
neighborhood of \(x \) which misses \(G_k^* \cap H_i \) and hence intersects no member of \(J_k \).

Case II. Suppose \(x \in G_k^* \). If \(\text{ord}(x, \mathcal{G}_k) > j + 1 \) then \(x \) belongs to at least \(j + 2 \) members of \(\mathcal{G}_k \), say \(G(\alpha_\ell, k) \) for \(\ell = 1, \ldots, j+2 \). But \(\bigcap_{\ell=1}^{j+2} G(\alpha_\ell, k) \cap S_k = \emptyset \), so \(\bigcap_{\ell=1}^{j+2} G(\alpha_\ell, k) \) intersects no member of \(J_k \).

Finally if \(\text{ord}(x, \mathcal{G}_k) = j + 1 \) then \(x \) belongs to exactly \(j + 1 \) members of \(\mathcal{G}_k \), \(G(\alpha_\ell, k) \) for \(\ell = 1, 2, \ldots, j + 1 \). Then \(\bigcap_{\ell=1}^{j+1} G(\alpha_\ell, k) \) intersects only \(F(B, k) \) where \(B = \{\alpha_1, \alpha_2, \ldots, \alpha_{j+1}\} \).

It is easy to see that \(P(i, j+1) = P(i, j) \cup \bigcup_{k=1}^{\infty} \bigcup J_k \) so that the proof is complete. Hence \(X \) has property \(B(D, (\omega_0)^2) \).

Remark. It is important to note that in the construction above, the families \(J_k \) cover all points which have finite positive order with respect to some \(\mathcal{G}_k \).

Lemma. If \(\mathcal{U} \) be an open cover of a space \(X \) and \(C \) a closed subset of \(X \). Suppose that \(J = \{F_\alpha : \alpha \in A\} \) is a partial refinement of \(\mathcal{U} \) such that

1. each member of \(J \) is closed in \(X - C \) and
2. \(J \) is locally finite on \(X - C \).

Then there exists a sequence of open collections \(\{\mathcal{G}_i\}_{i=1}^\infty \) which partially refined \(\mathcal{U} \), such that each \(x \in [\bigcup J] - C \) has finite positive order with respect to some \(\mathcal{G}_k \). (In fact, \(\text{ord}(x, \mathcal{G}_k) = 1 \) for some \(k \).)

Proof. Now if \(\Gamma_n = \{B : B \subseteq A, |B| = n\} \), define \(H(B) = \bigcap_{\beta \in B} F_\beta \) for each \(B \in \Gamma_n \). Note that \(H(B) \subseteq U(B) \) for some \(U(B) \in \mathcal{U} \). Let \(\mathcal{G}_n = \{G(B) : B \in \Gamma_n\} \), where
Theorem 2.3. If a space X has property $B(LF, (\omega_0)^2)$, then X is weakly θ-refinable.

Proof. Suppose X has property $B(LF, (\omega_0)^2)$ and \mathcal{U} is an open cover of X. Then there exists a collection of families $\{ \mathcal{J}_s : s < (\omega_0)^2 \}$ such that

(i) each member of \mathcal{J}_s is closed in $X - \bigcup \{ \bigcup_{s' < s} \mathcal{J}_{s'} \}$,

(ii) $\bigcup \{ \bigcup_{s' < s} \mathcal{J}_{s'} \}$ is closed in X for each s,

(iii) \mathcal{J}_s is locally finite in $X - \bigcup \{ \bigcup_{s' < s} \mathcal{J}_{s'} \}$.

By the previous lemma, there exists for each s, a sequence $\{ \mathcal{G}_s^i \}_{i=1}^{\infty}$ of open collections such that each point $x \in \bigcup_{s' < s} \mathcal{J}_{s'}$ has finite positive order with respect to \mathcal{G}_k, for some k. Without loss of generality we may assume that each \mathcal{G}_k^s is a partial refinement of \mathcal{U}. It is easy to see that $\{ \bigcup_{i < \omega_0} \bigcup_{s < (\omega_0)^2} \mathcal{G}_i^s \}$ is a weak θ-refinement of \mathcal{U}, and hence X is weakly θ-refinable.

Remark. It should be noted that Theorem 2.3 above remains true for any countable ordinal β. The proof is similar.

Summary. Property $B(D, \omega_0) \Rightarrow$ weakly $\bar{\theta}$-refinable \Rightarrow property $B(D, \omega_0)^2) \Rightarrow$ property $B(LF, (\omega_0)^2) \Rightarrow$ weakly θ-refinable.
3. Property B (HCP, a) and Irreducibility

In [17] the author obtained the following result.

Theorem 3.1. Every weak θ-refinable space is irreducible.

Since property $B(D, \omega_0) \Rightarrow$ weakly θ-refinable, every space with property $B(D, \omega_0)$ is irreducible. Here we can obtain the stronger result, that every space with property $B(HCP, a)$ is irreducible.

The following lemmas are straightforward, and hence their proofs are omitted.

Lemma 3.2. Let $H \subseteq X$ and let U be a collection of open sets in X which covers H. If $U\,|\,H$ has a minimal open (in H) refinement then there exists an open (in X) collection V which partially refines U and covers H, such that V is a minimal open cover of $U\,V$.

Lemma 3.3. Let X be a topological space and $H = \bigcup_{s < \alpha} H_s$ where $\bigcup_{s' < s} H_{s'}$ is a closed subset of X for each $s < \alpha$. Let U be a collection of open subsets of X which covers H. If for each $s < \alpha$, W_s is a collection of open subsets of X which partially refines U and covers $H_s - \bigcup_{s' < s} W_{s'}$ minimally, then there exists a collection V of open subsets of X which partially refines U, covers H, and is a minimal open cover of $U\,V$.

Theorem 3.4. Let $U = \{U_{a} : a \in A\}$ be a collection of open subsets of a space X and $H = \{H_{a} : a \in A\}$ a hereditarily
closure preserving collection such that $H_\alpha \subseteq U_\alpha$ for each $\alpha \in A$. Then \mathcal{U} has an open partial refinement which covers $\cup H$ and is a minimal open cover of its union.

Proof. Suppose that $H = \{H_\alpha : \alpha \in A\}$ is a hereditarily closure preserving collection with $H_\alpha \subseteq U_\alpha$ for each $\alpha \in A$. We assume that A is well ordered. For each $\alpha \in A$ choose

$$x_\alpha \in H_\alpha - \bigcup_{\beta < \alpha} H_\beta$$

when $H_\alpha - \bigcup_{\beta < \alpha} H_\beta \neq \emptyset$, and let $A' = \{ \alpha \in A : H_\alpha - \bigcup_{\beta < \alpha} H_\beta \neq \emptyset \}$. Since X is T_1 and H is hereditarily closure preserving $\{x_\alpha : \alpha \in A'\}$ is a discrete closed collection in X. Define

$$W_\alpha = U_\alpha - \{ x_\beta : \beta \in A' \text{ and } \beta \neq \alpha \}$$

for each $\alpha \in A$. Clearly $\mathcal{W} = \{ W_\alpha : \alpha \in A' \}$ is a minimal open cover of $\cup H$.

We now can obtain the following.

Theorem 3.5. Every space X space with property $B(HCP,\alpha)$ is irreducible, for any ordinal α.

Proof. Let \mathcal{U} be an open cover of X. Then \mathcal{U} has a refinement $\bigcup_{s < \alpha} \mathcal{V}_s$ satisfying properties in Definition 1.6 above. By induction we construct a sequence of $\{\mathcal{V}_s\}_{s < \alpha}$ of open collections such that for each $s < \alpha$,

(i) \mathcal{V}_s is a partial refinement of \mathcal{U},

(ii) $\bigcup_{s' < s} \mathcal{V}_{s'}$ covers $\bigcup_{s' < s} [\bigcup \mathcal{J}_{s'}]$

(iii) $\bigcup_{s' < s} \mathcal{V}_{s'}$ is a minimal open cover of its union.

(1) For $s = 1$, \mathcal{J}_1 is a hereditarily closure preserving collection of closed subsets of X. By Theorem 3.4 above there exists an open partial refinement \mathcal{V}_1 of \mathcal{U} such that \mathcal{V}_1 is a minimal open cover of $\cup \mathcal{J}_1$.

(2) Assume that \(V_{s'} \) has been constructed satisfying (i)-(iii) above for \(s' < s \). Define \(J^*_s = \{ F - \bigcup_{s' < s} V_{s'} \} : F \in J_s \} \) so that \(J^*_s \) is a hereditarily closure preserving collection in \(X \). By Theorem 3.4 again there exists an open partial refinement \(W_s \) of \(U \) such that \(W_s \) covers \(\bigcup J^*_s \) and is a minimal open cover of its union. Now define \(V_s = \{ W - \bigcup_{s' < s} V_{s'} \} : W \in W_s \} \). It is easy to check that \(V_s \) satisfies properties (i)-(iii) above and the induction is complete. As in Lemma 3.3 \(\bigcup V_s \) is a minimal open cover of \(X \) and refines \(U \). Hence \(X \) is irreducible.

Corollary 3.6. Every \(\mathfrak{N}_1 \)-compact space with property \(B(\text{HCP}, \alpha) \) is Lindelöf, where \(\alpha \) is any countable ordinal.

Theorem 3.7. Let \(f: X \to Y \) be a closed continuous map. If \(X \) has property \(B(\text{HCP}, \alpha) \), then \(Y \) has property \(B(\text{HCP}, \alpha) \) and hence is irreducible.

Proof. The proof follows from the fact that closure preserving collections are preserved under closed maps.

4. Applications and Shrinkability

Definition 4.1. An open cover \(\{ G_\alpha : \alpha \in A \} \) is shrinkable if there exists a closed cover \(\{ F_\alpha : \alpha \in A \} \) such that \(F_\alpha \subseteq G_\alpha \) for each \(\alpha \in A \).

In [19] the author obtained the following result.

Theorem 4.2. A space \(X \) is normal iff every weak \(\varnothing \)-cover of \(X \) is shrinkable.
A generalization of this result can now be proved using the notion of property above.

Theorem 4.3. Let \(\mathcal{G} = \{G_\alpha : \alpha \in A\} \) be an open cover of a space \(X \). If \(k \) is any countable ordinal, and \(\mathcal{G} \) has an open refinement \(\bigcup \mathcal{V}_s \) where \(\mathcal{V}_s = \{V(\alpha, s) : \alpha \in A\} \) satisfies,

1. \(V(\alpha, s) \subseteq G_\alpha \) for each \(\alpha \in A \),
2. \(\bigcup V(\alpha, s) \) is a cozero set in \(X \) for each \(s \),

then \(\mathcal{G} \) is shrinkable.

Proof. Define \(\mathcal{V}^*_s = \bigcup \mathcal{V}(\alpha, s) \) for each \(s < k \) so that \(\{\mathcal{V}^*_s : s < k\} \) is a countable cozero cover of \(X \). Then \(\{\mathcal{V}^*_s : s < k\} \) has a locally finite open refinement \(\{\mathcal{W}^*_s : s < k\} \) such that \(\mathcal{W}^*_s \subseteq \mathcal{V}^*_s \) for each \(s < k \). Define \(H(\alpha, s) = \mathcal{W}^*_s \cap V(\alpha, s) \) for each \(\alpha \in A \) and each \(s < k \), and \(H_\alpha = \bigcup H(\alpha, s) \). It should be clear that \(H_\alpha \subseteq G_\alpha \) for each \(\alpha \in A \) and \(\{H_\alpha : \alpha \in A\} \) covers \(X \). Hence \(\mathcal{G} \) is shrinkable.

Theorem 4.4. Let \(X \) be a normal space. For any countable ordinal \(k \), every open cover with property \(B(HCP,k) \) is shrinkable.

Proof. Let \(\mathcal{G} = \{G_\alpha : \alpha \in A\} \) be an open cover of \(X \) with property \(B(HCP,k) \) where \(k \) is any countable ordinal. Then \(\mathcal{G} \) has a refinement \(\bigcup \mathcal{J}_s \) where,

1. \(\mathcal{J}_s = \{F(\alpha, s) : \alpha \in A\} \) is HCP and closed in \(X - \bigcup_{s' < s} \mathcal{J}_{s'} \).
2. \(F(\alpha, s) \subseteq G_\alpha \) for each \(\alpha \in A \).

We show by transfinite induction that there exists for each \(s < k \), an open collection \(\mathcal{V}_s = \{V(\alpha, s) : \alpha \in A\} \) satisfying
(1) $V(\alpha, s) \subseteq \overline{V(\alpha, s)} \subseteq G_\alpha$ for each $\alpha \in A$,
(2) $\bigcup_{\alpha \in A} V(\alpha, s)$ is cozero in X for each s.
(3) $\bigcup_{s' \in s} V_s$ covers $\bigcup_{s' \in s} J_s$ for each s.

Assume V_s with the above properties has been constructed for all $s' < s$. Define $H(\alpha, s) = F(\alpha, s) - \bigcup_{s' \in s} V_s$ so that $H(\alpha, s) = \overline{H(\alpha, s)} \subseteq G_\alpha$ for each $\alpha \in A$. Since $H = \{H(\alpha, s) : \alpha \in A\}$ is closure preserving and X is normal, there exists an open collection $\overline{V_s} = \{V(\alpha, s) : \alpha \in A\}$ such that $\overline{V_s}$ is a partial refinement of ζ, and
(1) $H(\alpha, s) \subseteq V(\alpha, s) \subseteq \overline{V(\alpha, s)} \subseteq G_\alpha$ for each $\alpha \in A$,
(2) $\bigcup_{\alpha \in A} V(\alpha, s)$ is a cozero set in X.

Clearly $\bigcup_{s' \in s} V_s$ covers $\bigcup_{s' \in s} J_s$ and the construction is complete. By Theorem 4.3 above, ζ is shrinkable.

Theorem 4.5. Suppose that $X = \bigcup_{i=1}^{\infty} H_i$ where each $H_i = \overline{H_i}$ has property $B(D, \omega_0)$. Then X has property $B(D, \omega_0)$.

Proof. Suppose each H_i has property $B(D, \omega_0)$ and \mathcal{U} is an open cover of X. Then \mathcal{U}/H_i has a refinement $\mathcal{U}_{i=1}^{\infty} J_{j,k}^i$ such that $J_{j,k}^i$ is a discrete closed collection in $H_i = \bigcup_{k<j} J_{j,k}^i$.

Since $J_{j,k}^i$ is a discrete closed collection in X for each i, the natural diagonalization of the families $\mathcal{U}_{i=1}^{\infty} J_{j,k}^i$ yields the desired collections satisfying property $F(D, \omega_0)$.

Theorem 4.6. Let $f : X \to Y$ be a perfect map.

(1) If X has property $B(LF, \omega_0)$, then so does Y and hence Y is irreducible.

(2) If X is weakly θ-refinable, then Y has property $B(LF, (\omega_0)^2)$ and hence is weak θ-refinable.
Open Questions.

(1) Is weak θ-refinability or weak θ-refinability preserved under perfect or closed maps?

(2) Is metacompactness equivalent to weak θ-refinable, almost expandable and orthocompactness?

(3) When are weakly θ-refinable spaces irreducible?
For example, is countably metacompactness enough?

(4) When does property $B(D,(\omega_0)^2)$ imply weak θ-refinability?

(5) Is there a simple example of a space which has property $B(D,\omega_0+1)$ but does not have property $B(D,\omega_0)$?

The author would like to thank the referee for his comments concerning this paper.

References

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24060