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SURJECTIVE APPROXIMATE ABSOLUTE 

(NEIGHBORHOOD) RETRACTS

v 

Zvonko Cerin 

In 1978 Paul R. Patten [Pl] introduced the notions of 

a surjective approximate absolute retract (SAAR), a sur­

jective approximate absolute neighborhood retract in the 

sense of Noguchi (SAAN~), and a surjective approximate 

absolute neighborhood retract in the sense of Clapp 

(SAANRC). He wanted to get generalizations of an absolute 

retract (AR) and an absolute neighborhood retract (ANR) 

which are localty connected and are therefore more natural 

than the original generalizations of Noguchi [N] and Clapp 

[C] if one wishes to study the properties of the image of 

a compact ANR under a certain class of maps (see [P2]). 

The purpose of this note is to improve some results 

in [Pl] and to prove some new results about Patten's 

notions. 

Our results and presentation were greatly improved 

thanks to helpful comments by the referee. 

We start by recalling the definitions of all generali­

zations of compact ANR's mentioned above. We assume that 

the reader is familiar with shape theory of compacta [B4]. 

We shall say that maps f,g: Z + Y of a space Z into 

a metric space (Y,d) are E-cZose provided d(f(z) ,g(z)) < E 

for each z E Z. If Z is a subset of Y and f: Z + Y is 

E-close to the inclusion iZ,y of Z into Y, then f is called 

an E-push. 
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Definition. A map r: Y -FX of a metric space Y into 

its subspace X is an E.-retraction provided rlX is an E.-push. 

If, in addition, reX) = X, then r will be called a surjec­

tive E-retraction. When there is an E-retraction of Y onto 

X for every E > 0, we say that X is an approximate retract 

of Y. X is a surjective approximate retract of Y if for 

every E > 0 there is a surjective E-retraction of Y onto X. 

Definition. By a (surjective) approximate neighbor-~ 

hood retract of a metric space Y in the sense of Noguchi 

will be meant a compact subspace X of Y which is a (sur­

jective) approximate retract of some neighborhood of X in Y. 

Definition. Bya (surjective) approximate neighborhood re­

tract of a metric space Y in the sense of Clapp will be meant a com­

pact subspace X of Y ,such that for every E. > 0 there is a neighbor­

hood U of X in Y and a (surjective) E-retraction r: U ~ X. 

If a compact metric space X is a (surjective) approxi­

mate retract [a (surjective) approximate neighborhood 

retract in the sense of Noguchi or Clapp] of every metric 

space in which it is embedded, then X is said to bea 

(surjective) approximate absolute retract [a (surjective) 

approximate absolute neighborhood retract in the sense of 

No~uchi or Clapp]. These will be abbreviated as AAR 

(SAAR), [AAN~ (SAAN~), or AANR (SAANR )]' respectively.C C

It was observed in [PI] that every SAAR, SAAN~, or 

SAANRC is locally connected (i.e., a Peano compactum) so 

that the class of SAAR, SAAN~, or SAANR is properly con­C 

tained in the class of AAR, AAN~, or AANR ' respectively.C 

In the sequel we shall need the following proposition 

resembling (2.1) in [C] (see also [PI, Lemma 2]). 
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Proposition 1. A compactum X in the Hilbert cube Q 

is an SAAR (an SAAN~ or an SAANR ) iff X is a surjectiveC

approximate (neighborhood) retract of Q (in the sense of 

Noguchi or Clapp, respectively). 

Proof. Suppose that a compactum X in Q is a surjec­

tive approximate retract of Q and consider X also as a sub­

set of a metric space M. Since every metric space can be 

embedded as a closed subset of an AR [Hu, p. 81] without 

loss of generality we can assume that 11 is an AR. Let 

f: M ~ Q be an extension of the identity map id and letx 
r: Q ~ X be a surjective E-retraction. Then r 0 f: M ~ X 

is also a surjective E-retraction. Hence, X is an SAAR. 

The converse and the proofs of the remaining two state­

ments are obvious. 

Corollary 1. Let X and Y be compacta such that X is 

a surjective approximate retract of Y. Then 

a) YEAR implies X E SAAR; and 

b) Y E ANR implies X E SAAN~. 

Proof. Consider X and Y as subsets of Q. The compo­

sition of a retraction of (a neighborhood N of Yin) Q and a 

surjective E-retraction of Y into X will be a surjective 

E-retraction of (the neighborhood N of X in) Q onto X. 

Hence, Proposition 1 applies. 

An interesting problem is to decide whether a surjec­

tive approximate retract X of an SAAR (SAANR or SAAN~)
C 

Y is an SAAR (SAANR or SAAN~, respectively). The obviousC 

attempt is to compose a surjective (E/2)-retraction r of 
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(a neighborhood N of Yin) Q onto Y and a surjective 

(c/2)-retraction of Y onto X to get an s-retraction of 

(the neighborhood N of X in) Q onto X. However, it is not 

clear that r r(X) = X. This will hold provided the 

r l 

l 0
 

following statement is true.
 

(*) Let Y and X, X c Y, be locally connected compacta. 

Then for every s > 0 there is a 8 > 0 such that for every 

8 -push f: Y ~ Y of Y onto itself, there is an s-push 

gO: f(X) ~ X of f(X) onto X which extends to a map g: Y ~ Y. 

The next two theorems show that the question as to 

whether an SAANR X is either an SAAR or an SAAN~ dependsC 

only on shape properties of X. The first of them improves 

Theorem 2 in [PI] and resembles Theorem 7 in [Bo] while 

the second is similar to Theorem 8 in [Bo]. 

Theorem 1. A compact metric space X is an SAAR iff 

X is both an FAR and an/ SAANRC. 

Proof. Suppose X is an SAAR. Then X is also an AAR 

and therefore it is an SAANR and an FAR because Bogatyi
C
 

[Bo] showed that FAR + AANR ~ AAR.
C 

Conversely, let X be both an FAR and an SAANR WeC. 

shall consider X as a subset of the Hilbert cube Q and 

prove that X is a surjective approximate retract of Q. 

This will clearly suffice by Corollary 1. 

For a given E > 0, since X is an SAANR ' there is aC 

neighborhood U of X in Q and a surjective E-retraction 

r: U ~ X. But, since X is also an FAR, by Borsuk's 

characterization of compacta with trivial shape [B3, 
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Theorem (1.1)], there is a map f: Q ~ U such that fix = ix,u· 

The composition R = r 0 f: Q ~ X is a surjective E-retrac­

tion of Q onto X. Hence, X is a surjective approximate 

retract of Q. 

Theorem 2. A compact metric space X is an SAAN~ iff 

X is both an FANR and an SAANR
C

. 

Proof. Since an SAAN~ is clearly an AAN~ and an 

AAN~ is an FANR by [G], it follows that an SAAN~ is both 

an FANR and an SAANRC . 

Conversely, suppose that X is an FANR and an SAANR
C

. 

We shall assume that X is a subset of Q and prove that X 

is a surjective approximate neighborhood retract of Q in 

the sense of Noguchi. By Corollary 1, this would imply 

that X is an SAAN~. 

Since X is an FANR, there is a neighborhood V of X 

in Q such that for every neighborhood W of X in Q there is 

a homotopy f~: V ~ Q, 0 ~ t ~ 1, satisfying f~ = iV,Q' 

f~(V) c W, and f~IX iX,Q [B4, p. 264]. On the other 

hand, since X is an SAANR ' for each E > 0 there is a
C 

neighborhood WE of X in Q and a surjective E-retraction 

r : W ~ X. But, the composition r 0 fW' €: V ~ X is also
E E E 1 

a surjective E-retraction. Hence, X is a surjective ap­

proximate neighborhood retract of Q in the sense of 

Noguchi. 

Corollary 2. Everyone-dimensional SAANR and everyN 

plane SAAN~ is an ANR. 

Proof. Let X be a one-dimensional SAAN~. Then X is 



10 v 

Cerin 

locally connected and its first Betti number is finite 

because X is an FANR. Hence, X is an ANR [B2, p. 138]. 

Similarly, if X is a plane SAAN~, then X is locally 

2
connected and its complement R -'X has a finite number of 

components because X is an FANR. Hence, X is an ANR 

[B2, p. 138]. 

Corollary 3. Everyone-dimensional SAAR and every 

plane SAAR is an AR. 

Definition. Let [ be a class of compacta. A compact 

metric space X is said to be quasi-[ space if for every 

E > 0 there exist a space K E [, a map f from X onto K, 

and a map 9 from K onto X such that 9 0 f is an E-push. 

Note that a compactum X is a quasi-ANR (a quasi-AR) 

[PI] iff X is quasi-[ space when [ is the class ANR(AR) of 

all compact ANR's (AR's). 

Proposition 2. Let [ and 0 be classes of compacta 

and let X be a quasi-[ space. 

a) If each member of [ is an SAAR., then X is an SAAR. 

b) If each member of [ is an SAANRC., then X is an 

SAANRC· 

c) If each member of [ is a quasi-O space., then X is 

a quasi-O space. 

Proof of a). Without loss of generality we can assume 

that X and every member of [ are compacta in Q. For an 

E > 0 pick K E [ and maps f: X + K of X onto K and g: K + X 

of K onto X such that 9 0 f is an (E/2)-push. Choose a 
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8 > 0 such that g maps 8 -close points into (E/2) -close 

points. Let F: Q ~ Q be an extension of f and let 

r: Q ~ K be a surjective 8 -retraction. It is easy to 

check that g r 0 F is a surjective E-retraction of Q onto0 

X.	 Hence, by Proposition 1, X is an SAAR. 

The proof of b) is similar to the above proof of a). 

Proof of c). First choose K E Cand maps f: X ~ K 

of X onto K and g: K ~ X of K onto X with g f (E/2)-close0 

to the id . Then pick LEO and maps a: K ~ L of K onto Lx
and 6: L ~ K of L onto K such that 6 0 a is 8 -close to id

K
, 

where 8 > 0 has the property that g maps 8-close points 

of K into (E/2)-close points of X. Clearly, the diagram 

is E-cornrnutative. Hence, X is a quasi-O space. 

In the investigation of properties of AANRC'S the 

metric of continuity d fBI] played an important role fC].c 

For SAANRC'S the metric de defined below has a similar 

role. It was introduced by Mazurkiewicz [M]. If A,B E 2Y 

(i.e., A and Bare nonempty compacta in a metric space 

(Y,d» and there exist surjections from A to B and from 

B to A, then de(A,B) is the infimum of all E > 0 for which 

there are E-pushes of A onto Band B onto A. 

Corollary 4. Let C be a class of compacta, let 

{An}~=O be a sequence of compacta in a metric space ~ and 

let lim dc(An,AO) = D. If each An (n = 1,2,---) is a 
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quasi-[ space (an SAAR, an SAANR ), then AO is also ac
quasi-C space (an SAAR, an SAANRC ' respectively) . 

Proof· Since AO is a quasi-{A ,A ,---} space, we canl 2 

apply Proposition 2. 

Proposition 3. Let {An}~=O be a sequence of compacta 

in an ANR Y and let lim de (An,AO) = o. If each An 

(n = 1,2,---) is a surjective approximate neighborhood 

retract of Y in the sense of Clapp, then AO is also a sur­

jective approximate neighborhood retract of Y in the sense 

of Clapp. 

Proof. For an E > 0, pick an index n > 0 such that 

de (An,A ) < E/3. Let u and v be (E/3)-pushes of AO ontoO

An and An onto AO' respectively. Since An is a surjective 

approximate neighborhood retract of Y in the sense of 

Clapp there is an open neighborhood V of An in Y for which 

there is a surjective (E/3)-retraction r: V + An. Let 

u*: V* + V be an extension of the map u to a neighborhood 

V* of AO in Y such that u* is also an (E/3)-push. Then 

v 0 r 0 u*: V* + AO is a surjective E-retraction of V* 

onto A O. 

Corollary 5. Let X be a compact subset of Q. If 

there is a sequence {P } of polyhedra in Q such that 
n 

X = lim P in the metric de' then Xis both an SAANRC and n 

a quasi-ANR. 

It is interesting that the converse of Corollary 5 is 

also true. In order to prove that (in Theorem 3 below) we 

shall need the following lemma which describes a useful 
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property of an SAANR Since a compactum is an SAANRC iff
C

. 

it has finitely many components each of which is an SAANRC 

it suffices to consider only a connected SAANRC. 

A map f: X ~ Y of a space X into a metric space (Y,d) 

is s-dense if for every y E Y there is an x E X with 

d(f(x),y) < s. We shall say that a Peano continuum Y is 

an S-space provided for every s > 0 there is a 0 > 0 such 

that every o-dense map f: X ~ Y of a Peano continuum X 

into Y is s-close to a map f': X ~ Y of X onto Y. 

Lemma 1. Every connected SAANR is an S-space.C 

Proof. Let B be a connected nondegenerate SAANRC 

and let an s > 0 be given. Assume that B is a subset of 

Q and select a compact neighborhood U of B in Q for which 

there is a surjective (s/2)-retraction r: U ~ B. Pick the 

required 0 > 0 so that r maps 6o-close points of U ,into 

(s/2)-close points of B and so that the open 6o-neighbor­

hood N (B) of B lies in U.6o 

Consider a o-dense map f: A ~ B of a Peano continuum 

A into B. We can assume that the image f(A) is non­

degenerate (by taking a smaller 0 if necessary). By Lemma 

5 in [LM], there is a 6a-push h: f(A) ~ Q such that 

h(f(A» ~ N (f(A». But, since f is a a-dense map into B,2o 

No(B) c N2o (f(A» so that h(f(A» ~ No(B). This implies 

that f' = r h 0 f: A ~ B is a map of A onto B which is0 

s-close to f. 

Lemma 2. Let Cbe a class of s-spaces. Then every 

quasi-[ continuum X is also an S-space. 
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Proof· For a given E > 0, pick an S-space K E [, a 

map f of X onto K, and a map g ofK onto X such that g 0 f 

is an (E/2}-push of X onto itself. Let 0 > 0 be such that
1 

g maps 0l-close points into (E/2)-close points. Since K 

is an S-space, there is an n > 0 with the property that 

every n-dense map of a Peano continuum into K is 0l-close 

to a map onto K. Finally, the required 0 > 0 is chosen so 

that f maps o-close points into n-close points. 

The equivalence of (i) and (ii) in the next theorem 

was first proved in [PI, Theorem 1] . 

Theorem 3. For a compact connected subset X of Q the 

following are equivalent. 

(i) X is a quasi-ANR. 

(ii) X is an SAANR.,.
L. 

(iii) X is an AANR and an S-space.C 

(iv) There is a sequence {P } of connected polyhedra
n 

in Q such that X = lim P in the metric dc. n 

Proof. Since (i) => (ii) by Proposition 2(b), 

(ii) => (iii) by Lemma 1, and (iv) => (i) by Corollary 5, 

it remains to see that (iii) => (iv). For that implication 

it suffices to show that given an E > 0, there is a poly­

hedron P in Q such that dc(X,P} < E. Let E > 0 be given. 

Pick a 0,0 < 0 < E/4, with respect to E/2 using the fact 

that X is an S-space. Then we take an n,O < n < 0/2, such 

that there is a o-push r: Nn(X} ~ X [C, Lemma 4.2]. Next 

we select (see [HW, p. 73]) a connected polyhedron p* and 

a map f: X ~ P* of X onto p* with the preimage of each 
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point in p* of diameter < n (i.e., f is an n-map of X onto 

P*). According to [K, Theorem 9, §4l], there is an embed­

ding h: P* + Q such that the composition h f is an n-push.0 

Hence, P h(P*) is a polyhedron in Q contained in N (X)
n 

and rIp: P + X is a o-dense map of Pinto X. By the choice 

of 0, there is a, map g: P + X of P onto X which is (E/2)­

close to rip. But, since r is a o-push, g is an E-push of 

Ponto X. Hence, dc(X,P) < E. 

Corollary 6. A continuum X is an SAAR iff X is an 

AAR and an S-space. 

Corollary 7. Let M be a separable metric space and 

let SAANRC(M) denote the hyperspace of all connected 

SAANRC's in M with the topology of dc. Then SAANRC(M) 

is a separable metric space. 

Proof. Since M can be emebeded into Q, SAANRC(M) is 

a subspace of SAANRC(Q). But, SAANRC(Q) is separable 

because finite polyhedra in Q form a separable dense sub­

set (by Theorem 3) . 

That the polyhedra are dense is proved as follows 

(see Borsuk, Theory of retracts). Let G denote a countable 

dense subset of Homeo (Q), the group of all homeomorphisms 

of Q onto itself. Let P denote all finite nondegenerateg 

polyhedra in Q that are geometrically realized in Q (con­

sidered as a standard subset of £2). Let RP denote the g 

countable subset of P consisting of all polyhedra in P 
g g 

all vertices of which have all coordinates rational. It 

is easy to see that G(RP ) = {g(p) Ip E RP , g E G} is a g g 
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countable dense subset in P(Q), the collection of finite 

nondegenerate polyhedra in Q, with the topology of de. 

Corollary 8. Let X be a connected SAANR Then bothC. 

xthe hyperspace 2 of all nonempty compacta in X and the 

hyperspace C(X) of all nonempty subcontinua of X metrized 

by the Hausdorff metric are SAAR's. 

Proof. Modify Clapp·s proof in section 6 of [C] of 

a similar result for AANRC·S by requiring that all maps 

are onto. 

Recall that a compactum X is (-like, where ( is a 

class of compacta, if for every E > a there is an E-map of 

X ontO some member of (. If each member of a class 0 of 

compacta is (-like, then we say that the class 0 is (-like. 

Proposition 4. Let ( and 0 be classes of compacta 

and assume that o is (-like. If an ~N~X is a quasi-O 

space then X is also a quasi-( space. 

Proof. For a given E > 0, pick a K E 0, a map f: X + K 

of X onto K, and a map g: K + X of K onto X such that g 0 f 

is an (E/2)-push. Since X is a quasi-ANR by Theorem 3, 

we can use Lemma 1 in [PI] and get a 0 > a such that if u 

is a o-map of K onto an L E (, then there is a map v of L 

onto X such that g is (E/2)-close to v u. It is easy to0 

check that v (u 0 f) is an E-push of X onto itself. 

Hence, X is a quasi~ space. 

Proposition 5. Let [ be a class of continua. If a 

connected SAANRC X in Q is [-like, then X = lim K in the
i 

metric d- where each K. is homeomorphic to some member of (.
C 1 

0 
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Proof. The proof is almost identical to the proof 

of (iii) ~ (iv) in Theorem 3. 

Corollary 9. Let q - AR denote the class of all 

quasi-AR's. If an SAANR is (q - AR)-like~ then it is aC 

quasi-ARe 

Proof. Combine Corollary 4 and Proposition 5. This 

corollary improves Theorem 3 in [PI]. 

Corollary 10. If f: X + Y is a refinable map [FR] 

of an SAANR X onto a quasi-AR Y~ then X is also a quasi-AReC 

Proof. We can apply Corollary 9 because X is Y-like 

[FR] . 

The last two corollaries gave partial answers to Pat-

ten's question: is every SAAR a quasi-AR? The following 

proposition also gives a sufficient condition on an SAAR 

to be a quasi-ARe 

Proposition 6. Let X c Q be an SAAR and assume that 

there is an equicontinuous family {rk : Q + Xk}~=l of retrac­

tions with X C Nl/k(X) and X C X for each k > O. Thenk k 

X is a quasi-ARe 

Proof. Let an E > 0 be given. Let U be a compact 

neighborhood of X in Q for which there is an (E/2)-push 

r: U + X satisfying reX) = X. Then select a a > 0 such 

that r maps a-close points of U into (E/2)-close points of 

X. Next we pick an n > 0 and an index k O such that 

N (X) c U and r maps 3n-close points of Q into a-close
3n k 

points for all k ~ k O• Since we can assume that X is a 

nondegenerate Peano contin~um, according to Lemma 5 in [LMl, 
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;::Jthere is a 3n-push h: X -+ Q	 such that heX) N (X). Let 
n 

>	 ck k be such that X N (X). It is easy to check that
O k n 

u = r o h is a map of X onto X and v rlx is a map ofk k k 

X onto X and that v 0 u is an s-push of X onto itself.
k 

Proposition 7. Let P ITk>OXk be the Cartesian product 

of continua X Then
k

. 

a) P is an SAAR is each Xk is an SAAR; 

b) P is an SAANR
C if 

each X is an SAANR ; and
k C

c) P is an SAAN~ if each X is an SAAN~ and almostk 

all Xk's are SAAR's. 

Proof of b). It is clear that the product of finitely 

many SAANRC'S is an SAANR The statement for countablyC . 

infinitely many factors follows from Proposition 2(b) 

because	 P is a quasi-[ space, where [= {Xl ,x
2 

, ••• } is the 

n 
set of all finite products X = IT~=lXk. Indeed, for n > 0, 

n l n llet f .. P -+ x + denote the	 proJ'ection and let x + -+ Pn	 gn: 

~(xn+l)n+I,~(xn+l)n+2'···) where ~: X +l -+ ITk>nXk is a mapn

of a Peano continuum X + l onto a Peano continuum ITk>nXk. n 

The composition gn 0 f will be close to the idp providedn 

n is large enough. 

Proof of a). Use b), Theorem 1, and [B4, p. 193]. 

Proof of c). Use b), Theorem 2, and [B4, p. 195]. 

Proposition 8. Let K(X) denote the cone and SeX) the 

(unreduced) suspension of a continuum X. Then 

a) SeX) is an SAAR if X is an SAAR; 

bJ SeX) is an SAANRC if X is an SAANRC; 
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c) S(X) is an SAAN~ if X is an SAAN~; and 

d) K(X) is an SAAR if X is an SAANR
C

. 

Proof. of b). Consider X as a subset of Q. By Theorem 

3, there is a sequence {P } of connected polyhedra in Qn

such that X lim P in the metric dc. But, {S(P )} is n n 

a sequence of connected polyhedra in the Hilbert cube 

S(Q) [Ch] and S(X) = lim S(P ) in the metric d-. Hence,n c 

by Theorem 3 again, S(X) is an SAANR
C

. 

We shall close our remarks by identifying four inter­

esting closed subsets of the hyperspace 2Y of a metric 

space Y topologized by the metric d which are not closed c 

in (2Y,d ) . c 

The first of them is provided by the class of all 

quasi-contractible compacta in Y. Recall [Pl] that a com­

pactum X is quasi-contractible provided for every E > 0 

there is an E-push of X onto itself which is null-homotopic. 

Using Borsuk's Theorem (1.1) in [B3], it is easy to see 

that every quasi-contractible compactum has trivial shape. 

It follows from Theorem 2 in [Pl] and our Theorem 1 that 

an SAANR of trivial shape must be quasi-contractible.C 

Proposition 9. Let {An}~=O be a sequence of compacta 

in a metric space Y and assume that lim dc(An,AO) = o. 

If each An (n = 1,2,---) is quasi-contractible~ then AO 

is also quasi-contractible. 

Proof. Let an E > 0 be given. Select an index n > 0 

so that d6 (A ,AO) < E/4. Let f: AO ~ An be an (E/4)-pushn 

of AO onto An and let g: An ~ AO be an (E/4)-push of An 
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onto AO• Observe that the composition g 0 f is an (E/2)­

push of AO onto itself. Pick a a > 0 with the property 

that g maps a-close points of An into (E/2)-close points 

of AO• Since An is quasi-contractible, there is an a-push 

~ of An onto itself which is null-homotopic. Then g 0 ~ 0 f 

is a null~homotopic E-push of AO onto itself. Hence, AO 
is quasi-contractible. 

The collection of all quasi-contractible compacta in 

YY is not closed in (2 ,d ) because the closure of the c 

sin(l/x)-curve is a limit of arcs in the metric d and the 
c 

closure of the sin(l/x)-curve is a set of trivial shape 

which is not quasi-contractible. 

Remark. The similar result can be proved for every 

property r of maps such that ~ E r implies g ~ fEr.0 0 

The examples of such properties besides "to be null-homo­

topic" are "to have category ~ k," "to have cocategory 

~ k,"···(see [Gal). 

YThe second closed subset of (2 ,d-) is formed by all 
c 

compacta A in Y having the surjective fixed point property 

(sfpp) (i.e., such that for every map f of A onto itself 

there is a point a E A with f(a) = a). Clearly, a compactum 

with the fpp also has the sfpp, but the converse does not 

hold (consider a disjoint union of an arc and a point) . 

Proposition 10. Let {An}~=O be a sequence of compacta 

in a metric space Y and assume that lim dc(An,AO) = o. If 

each An (n = 1,2,···) has the sfpp, then AO also has the 

sfpp. 
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Proof. Suppose u is a map of AO onto itself without 

fixed points. We shall find an index n > 0 and construct 

a map v of An onto itself without fixed points. This is 

an obvious contradiction to the assumption about An'S. 

Since a map u does not have fixed points, there is an 

E > 0 such that d(x,u(x)) ; 3E for each x E AO• Pick an 

index n > 0 for which dc(An,AO) < E. Let f be an E-push 

of AO onto An and let g be an E-push of An onto AO• Then 

the composition v = f 0 u 0 g is a map of An onto itself 

without fixed points because d(y,v(y)) > E for each y E An· 

The collection of all compacta in Y having the sfpp 

does not form a closed subset in (2Y,d ) because the dis­c 

joint union of an arc and the Cantor set (which does not 

have the sfpp) is the limit of disjoint unions of an arc 

and finitely many points (that have the sfpp) in the metric 

of continuity. 

Corollary 11. Let [be a class of compacta with the 

sfpp. If an SAANR X is [-like, then X has the sfpp.C
 

Proof. Combine Propositions 5 and 10.
 

It follows from the next proposition and the Lemma 3 

Ybelow that the third closed subset of (2 ,d-) provide all c 

compacta in Y which quasi-embed into some space X. Recall 

that a compactum A is quasi-embeddable into a space X if 

for every E > 0 there is an E-map f of A into X (i.e., the 

diameter of each set f-l(x), x E f(A), is less than E). 

Lemma 3. Let [ be a class of compacta and suppose 

AO lim An in the topology of dc. If An is [-like for 
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n = 1,2,3,···, then A is [-like.
O
 

Proof. Obvious.
 

Note that the analogue of Lemma 3 for the metric d 

is false, as the example o~ a sequence of arcs converging 

to a point in the topology of d shows (using [ as the 
c 

class whose only member is an arc) . 

Proposition 11. Let [ be a class of compacta quasi­

embeddable into a space X. If a compactum A is [-like, 

then A is also quasi-embeddable into x. 

Proof. Let an € > 0 be given. Pick a K E [ and an 

s-map f of A onto K. Since K is compact, there is a 

o	 > 0 such that if Z is a subset of K with a diameter < 0, 

-1
then f (Z) has diameter < s. Now, use the fact that K is 

quasi-embeddable into X and take a o-map g of K into X. 

Clearly, g f is an s-map of A into X.0 

The collection of all S-spaces in a metric space Y 

Yis the fourth example of a closed set in (2 ,d-). This set c 

is clearly not closed in (2 Y,d ) because a limit of Peano c 

continua in the metric d need not be a Peano continuum. c 

Corollary 12. Let {A }oo 0 be a sequence of continua 
n n= 

in a metric space Y and assume that lim dc(An,A ) = o. If
O

each An (n = 1,2,---) is an S-space, then AO is also an 

S-space. 

Proof. Since AO is clearly a quasi-{A ,A ,---} space,
l 2 

we can apply Lemma 2. 
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Finally, let us observe that there is no evidence 

either in this note or in [PI] to suggest that the fo11ow­

ing conjecture is not true. 

Conjecture. Every locally connected AANR is an
C
 

SAANRC·
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