Research Announcement:
COMMON FIXED POINT THEOREMS

by
S. A. NAIMPALLY, K. L. SINGH, AND J. D. M. WHITFIELD
COMMON FIXED POINT THEOREMS

S.A. Naimpally, K.L. Singh, and
J.H.M. Whitfield

Definition. (Takahashi) Let X be a metric space and I be closed unit interval. A mapping \(W : X \times X \times I \rightarrow X \) is said to be a convex structure on X if for all \(x, y \in X \) and \(\lambda \in I \) the following condition is satisfied

\[
d(u, W(x, y; \lambda)) \leq \lambda d(u, x) + (1-\lambda)d(u, y)
\]

for all \(u \) in X. A metric space with a convex structure is called a convex metric space.

Theorem 1. Let \(K \) be a nonempty compact convex subset of a convex metric space \(X \). If \(S \) is a left reversible semigroup of nonexpansive mappings of \(K \) into itself then \(K \) contains a common fixed point of \(S \).

Theorem 2. Let \(X \) be a compact metric space and \(G : X \rightarrow X \) be a linearly ordered semigroup of mappings. Suppose \(G \) has diminishing orbital diameter and there exists \(g \in G \) with \(g \neq I \) such that

(i) \(G \) is continuous mapping with diminishing orbital diameter,

(ii) \(G \) is Archimedean at \(g \).

Then \(G \) has a common fixed point.

Theorem 3. Let \(X \) be a convex metric space having property (C) and \(H \) be a closed convex subset of \(X \). Let \(K \) be a bounded, closed convex subset of \(H \) with normal structure.
If $T: K \rightarrow H$ is nonexpansive and if $T: \partial_H K + K$ ($\partial_H K$ is the relative boundary of $H \cap K$ in H), then T has a fixed point in K.

Also we prove a common fixed point theorem for commuting linearly ordered semigroup of nonexpansive mappings having convex diminishing orbital diameter.

Theorem 1 generalizes results of De Marr [1], Mitchell [4] and Takahashi [5,6]. Theorem 2 and 3 extend the results of Kirk [2], [3] respectively.

References

Lakehead University
Thunder Bay, Ontario
Canada P7B 5E1