C-SETS AND MAPPINGS OF CONTINUA

by

W. T. Ingram
C-SETS AND MAPPINGS OF CONTINUA

W. T. Ingram

1. Introduction

In 1955 A. D. Wallace [9] introduced the study of C-sets and investigated C-sets in semigroups. In this paper we investigate C-sets in Hausdorff continua (compact, connected Hausdorff spaces) and note some properties of C-sets pertaining to the study of mappings onto continua. If M is a continuum, a proper subset H of M is a C-set in M provided H is a subset of any subcontinuum of M which contains both a point in H and a point not in H. In Lemma 1 of [9, p. 639] Wallace observed that C-sets are connected and have no interior. Although C-sets do not have to be closed, it is not difficult to show that if K is a C-set which is not closed then K is an indecomposable continuum. Moreover, if K is a C-set which is not closed the K is the union of some of the composants of K. To see this suppose H is a subcontinuum of K containing a point in K and a point not in K. Then H contains K and thus H contains K, so each proper subcontinuum of K which intersects K is a subset of K. Consequently, each composant of K which intersects K is a subset of K.

A continuum M is a triod provided it contains a subcontinuum C such that M-C has at least three components. A continuum is said to be atriodic provided it contains no triod. The statement that the continuum M is unicoherent
means if A and B are continua whose union is M then \(A \cap B \) is connected. In his doctoral dissertation at the University of Houston, Collins [2] introduced the class of IUC continua and proved [2, Theorem 6, p. 12] that atriodic continua have property IUC hereditarily. A continuum has property IUC provided every proper subcontinuum with interior is unicoherent. Collins' result that atriodic continua have property IUC has been obtained independently by Mackowiak and Tymchatyn [7]. In this paper we generalize these results (Theorem 3).

The so-called "boundary bumping theorem" is used often in the proofs in this paper. For a proof of it in Hausdorff continua see [5, Theorem 2, p. 172].

2. A Characterization of C-Sets

The following theorem, although not stated in this manner, is essentially what Cook [1, Theorem 4, p. 243] and Read [8] (see also [6, 5.7, p. 111]) proved when they showed that a continuum is hereditarily indecomposable if and only if every mapping of a continuum onto it is confluent. The proof presented here differs only slightly and is included only for the sake of completeness.

Theorem 1. Suppose \(M \) is a Hausdorff continuum and \(H \) is a proper subcontinuum of \(M \). Then \(H \) is a C-set in \(M \) if and only if for each mapping \(f \) of a continuum onto \(M \) every component of \(f^{-1}(H) \) is thrown by \(f \) onto \(H \).

Proof. Suppose \(M \) is a continuum, \(H \) is a subcontinuum of \(M \) which is a C-set and \(f \) is a mapping of a continuum \(X \)
onto M. Let K be a component of $f^{-1}(H)$ and G be a monotonic collection of subcontinua of X such that the common part of all the members of G is K and each member of G contains a point not in K. Then, if J is a continuum in G, $f[J]$ contains a point of H and a point not in H, so H is a subset of $f[J]$. Since X is a Hausdorff continuum, G is monotonic and K is the common part of all the members of G, $f[K] = \bigcap_{J \in G} f[J]$. Thus, $f[K] = H$.

On the other hand suppose H is not a C-set and C is a subcontinuum of M not containing H which contains a point of H and a point Q not in H. Let X be the continuum obtained by identifying $(Q,0)$ and $(Q,1)$ in $(M \times \{0\}) \cup (C \times \{1\})$ and f be the natural projection of X onto M. Then $f^{-1}(H)$ has two components one of which is not thrown onto H by f. This completes the proof of Theorem 1.

Remark. It is easy to show that a continuum is hereditarily indecomposable if and only if every proper subcontinuum of it is a C-set in it.

3. Atriodic Continua and C-Sets

In this section we often use the following property of atriodic continua: If M is a decomposable, atriodic continuum then M is the union of two continua A and B such that $A = \overline{A - (A \cap B)}$ and $B = \overline{B - (A \cap B)}$. For a proof of this see Collins [2] or [3]. It should be noted that in Collins' work he assumes that continua are metric but his arguments do not require changes for Hausdorff continua.
Lemma. If \(A \) and \(B \) are two continua which intersect such that (1) \(A \cup B \) is atriodic, (2) \(A = \overline{A - (A \cap B)} \) and \(B = \overline{B - (A \cap B)} \), and (3) \(A \cap B \) is the union of the two continua \(C_1 \) and \(C_2 \), then \(A \) is irreducible from \(C_1 \) to \(C_2 \).

Proof. Suppose \(P \) is a proper subcontinuum of \(A \) which intersects both \(C_1 \) and \(C_2 \) and let \(y \) be a point of \(A \) not in \(P \cup C_1 \cup C_2 \). That there is such a point \(y \) follows by the assumption that \(A = \overline{A - (A \cap B)} \) for if \(P \) contains \(A - (C_1 \cup C_2) \) then \(P \) contains \(A \). There exist mutually exclusive open sets \(U_1 \) and \(U_2 \) containing \(C_1 \) and \(C_2 \) respectively such that \(\overline{U_1} \) and \(\overline{U_2} \) are mutually exclusive and neither contains \(y \). Let \(B_1 \) and \(B_2 \) be the components of \(B \cap U_1 \) and \(B \cap U_2 \) containing \(C_1 \) and \(C_2 \) respectively. Then \(A \cup (P \cup B_1) \cup (P \cup B_2) \) is a triod.

The following theorem was proved independently by Maćkowiak and Tymchatyn [7, 13(2), p. 40]. In that paper they call C-sets which are continua terminal continua. This theorem is generalized in the next section of this paper.

Theorem 2. If \(M \) is an atriodic continuum then each proper subcontinuum of \(M \) which is not unicoherent is a C-set.

Proof. Suppose \(H \) is a proper subcontinuum of \(M \) such that \(H \) is not unicoherent and \(H \) is not a C-set. Then \(H \) is the union of two continua \(A \) and \(B \) such that \(A \cap B \) is not connected and \(A = \overline{A - (A \cap B)} \) and \(B = \overline{B - (A \cap B)} \). Suppose \(K \) is a subcontinuum of \(M \) containing a point of \(A \cup B \) and a
point not in \(A \cup B \). Since \(A \cap B \) is not connected and \(M \) is atriodic, \(A \cap B \) is the union of two continua \(C_1 \) and \(C_2 \).

Suppose \(K \) contains a point of \(B \). We now show that \(K \) contains \(A \).

Suppose \(x \) is a point of \(A - (A \cap B) \) which is not in \(K \). There is an open set \(U \) containing \(x \) which does not contain a point of \(B \cup K \). By the Lemma, \(A \) is irreducible from \(C_1 \) to \(C_2 \) so \(A - (A \cap U) \) contains no continuum intersecting both \(C_1 \) and \(C_2 \). Therefore, [5, Theorem 1, p. 168], \(A - (A \cap U) \) is the union of two mutually exclusive closed point sets \(H_1 \) and \(H_2 \) containing \(C_1 \) and \(C_2 \) respectively.

There exist mutually exclusive open sets \(U_1 \) and \(U_2 \) containing \(H_1 \) and \(H_2 \) respectively such that \(\overline{U}_1 \) and \(\overline{U}_2 \) are mutually exclusive and neither contains \(x \). Let \(A_1 \) and \(A_2 \) denote the components of \(A \cap U_1 \) and \(A \cap U_2 \) containing \(C_1 \) and \(C_2 \) respectively. Then \((B \cup K) \cup (B \cup \overline{A}_1) \cup (B \cup \overline{A}_2) \) is a triod.

Now, since \(K \) contains \(A \), by repeating the argument of the previous paragraph exchanging the roles of \(A \) and \(B \), we obtain the \(K \) contains \(B \). This will complete the proof.

4. HIUC Continua and C-Sets

A continuum having property IUC hereditarily is said to have property HIUC.

Theorem 3. If \(M \) is a continuum with property HIUC then each proper subcontinuum of \(M \) which is not unicoherent is a C-set.

Proof. Suppose \(H \) is a non-unicoherent proper subcontinuum of \(M \), and \(K \) is a subcontinuum of \(M \) containing a
point of H and a point not in H. Suppose x is a point of H which is not in K. Then there is an open set U containing x which contains no point of K. Then $H \cup K$ does not have property IUC since H is a non-unicoherent proper subcontinuum of $H \cup K$ which has interior in $H \cup K$.

Remark. It is easy to see from the example below that the hypothesis in Theorem 3 that M have property HIUC may not be weakened to M has property IUC for the circle is not a C-set in M.

5. Confluence and Weak Confluence

We conclude this paper with some consequences of Theorems 1, 2 and 3. First, we introduce some terminology which the author has found useful in discussing confluence and related properties.

Definitions. Suppose M is a continuum, H is a subcontinuum of M and f is a mapping of a continuum onto M. The statement that f is confluent with respect to H (respectively, weakly confluent with respect to H) means each (resp., some) component of $f^{-1}(H)$ is thrown by f onto H.

Thus, if f is a mapping of a continuum onto M then f is confluent (resp., weakly confluent) provided f is confluent (resp., weakly confluent) with respect to each
non-degenerate proper subcontinuum of M. Further, f is said to be pseudo-confluent provided f is weakly confluent with respect to each irreducible subcontinuum of M.

Theorem 1 may now be restated: A proper subcontinuum H of a continuum M is a C-set in M if and only if every mapping of a continuum onto M is confluent with respect to H.

The following theorems are immediate from Theorems 1 and 3.

Theorem 4. Suppose f is a mapping of a continuum onto the continuum M and M has property HIUC. If H is a non-unicoherent proper subcontinuum of M then f is confluent with respect to H.

Theorem 5. If f is a mapping of a continuum onto a continuum M having property HIUC then f is confluent (resp., weakly confluent) if and only if f is confluent (resp., weakly confluent) with respect to every unicoherent proper subcontinuum of M.

Corollary 1. Suppose f is a mapping of a continuum onto an atriodic continuum. Then f is pseudo-confluent if and only if f is weakly confluent.

Finally, we observe that Corollary 1 provides another proof of a theorem of Grispolakis and Tymchatyn [4, Theorem 5.3].

Corollary 2. Suppose M is an atriodic continuum. Then M is in Class W if and only if M is in Class P.
References

1. H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), 241-249.

4. J. Grispolakis and E. D. Tymchatyn, Continua which are images of weakly confluent mappings only, II, Houston J. Math. 6 (1980), 375-387.

7. T. Maćkowiak and E. D. Tymchatyn, Continuous mappings on continua, II (preprint).

University of Houston
Houston, Texas 77004