Research Announcement:

A NOTE ON GALE’S PROPERTY (G)

by

M. Henry, D. Reynolds and G. Trapp

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
 Department of Mathematics & Statistics
 Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.
A NOTE ON GALE'S PROPERTY (G)

M. Henry, D. Reynolds and G. Trapp

In [1], Gale gave a condition which could be used to replace equicontinuity in a less restrictive version of Ascoli's Theorem, namely where the range space is regular, rather than a metric or uniform space. Gale's Theorem 1 is stated below for the sake of completeness. Throughout this note, \(Y^X \) will denote the collection of all functions from \(X \) to \(Y \) with the product topology and if \(F \subset Y^X \), then \(\overline{F} \) will denote the closure of \(F \) in this topology, i.e., the pointwise closure of \(F \).

Theorem 1 (Gale). If \(X \) is a k-space and \(Y \) is regular, then a collection of continuous functions \(F \) from \(X \) to \(Y \) is compact in the compact-open topology if and only if

1. \(F \) is closed.
2. \(F(x) \) is compact for each \(x \) in \(X \).
3. If \(G \) is closed in \(F \) and \(U \) is open in \(Y \) then \(\cap \{ g^{-1}(U) \mid g \in G \} \) is open in \(X \).

In the proof of this theorem, Gale showed that if a collection \(F \) is continuous and satisfies condition (3) then the compact-open and pointwise topologies agree on \(F \). This condition was abstracted by Yang in [5] and renamed property (G).

Definition. \(F \subset Y^X \) is said to have property (G) if for each \(U \) open in \(Y \), and each pointwise closed subset \(G \) of \(F \), \(\cap \{ g^{-1}(U) \mid g \in G \} \) is open in \(X \).
Note that in the above definition, the topology being considered is the pointwise, rather than the compact-open, and F is not required to be a closed collection, as was the case in Gale's Theorem 1. Since F is not necessarily closed, the phrase "pointwise closed subset G of F" admits two distinct interpretations. Either

1. the closure of G in Y^X lies in F, or
2. G is closed in the relative topology on F induced by Y^X.

The purpose of this note is to examine this ambiguity.

Kelley, to whom Yang refers for all definitions not specified in [5], defines pointwise closed [4, p. 218] to mean closed in Y^X, so that interpretation (1) of property (G) seems to be intended. Yet the proof of Theorem 1 of [5] employs interpretation (2), and in fact is false using interpretation (1), as our Example B will show.

In order to sort out these difficulties, we will introduce two versions of the definition of Property (G).

Using interpretation (1) we will say $F \subseteq Y^X$ has property (G_1) if for each open U in Y, and for each $G \subseteq F$ such that $\overline{G} = G$, $\cap \{g^{-1}(U) | g \in G\}$ is open in X.

Similarly we will say $F \subseteq Y^X$ has property (G_2) if for each open U of Y and for each $G \subseteq F$ such that $G = \overline{G} \cap F$, $\cap \{g^{-1}(U) | g \in G\}$ is open in X.

It is clear that if F satisfies property (G_2) then F must also satisfy property (G_1), but the converse fails as the following example shows.
Example A. For each \(n \in \mathbb{N} \), define \(f_n : [0,1] \to [0,1] \) by

\[
 f_n(x) = \begin{cases}
 1/2n, & x \in [0,1/2n] \\
 x, & x \in [1/2n,1]
 \end{cases}
\]

and let \(F = \{f_n | n \in \mathbb{N}\} \). Then \(F \) has property \((G_1)\) trivially because the only subsets \(G \) of \(F \) for which \(\overline{G} \subset F \) are the finite ones, so the intersection condition is always satisfied. But letting \(U_0 = (0,1) - \{1/(2n+1) | n \in \mathbb{N}\} \) and noting that \(F \subseteq \overline{F} \cap F \), we have that

\[
 \cap \{f_n^{-1}(U_0) | n \in \mathbb{N}\} = [0,1) - \{1/(2n+1) | n \in \mathbb{N}\}
\]

which is not open in \(X \), so that \(F \) does not satisfy property \((G_2)\). Also note that \(F \) is equicontinuous and pointwise bounded, and therefore regular by the corollary to Theorem 3 of [5].

The proof of Theorem 1 of [5] establishes that a collection satisfying property \((G_2)\) is necessarily regular, but the next example shows that this result fails for property \((G_1)\).

Example B. For each \(n \in \mathbb{N} \), define \(f_n : [0,1] \to [0,1] \) by

\[
 f_n(x) = \begin{cases}
 4nx, & x \in [0,1/4n] \\
 2-4nx, & x \in [1/4n,1/2n] \\
 0, & x \in [1/2n,1]
 \end{cases}
\]

and let \(F = \{f_n | n \in \mathbb{N}\} \). Then \(F \) has property \((G_1)\) trivially, but is not equicontinuous at \(x = 0 \), and hence by Theorem 5 of [2] is not regular there.
Examples A and B also show that the corollary following Theorem 6 of [5] fails under either interpretation of property (G). However it is the case that whenever X is a k-space and Y is regular, if F is evenly continuous (or regular, by Theorem A of [3]) and $F(x)$ is compact for each x in X, then F satisfies property (G_1). This holds because if F is evenly continuous, then so is F by [4, Theorem 19, p. 235], and hence the product topology and the compact-open topology coincide on F. Thus F is compact by [6, Theorem B] and therefore satisfies property (G_1) by Gale's Theorem 1. It follows from the definition that F must also satisfy property (G_1).

References