TOPOLOGY PROCEEDINGS

Volume 9, 1984

Pages 217-225

http://topology.auburn.edu/tp/

A METRIC FOR METRIZABLE GO-SPACES

by

H. R. Bennett

Topology Proceedings

 $\textbf{Web:} \qquad \text{http://topology.auburn.edu/tp/}$

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A METRIC FOR METRIZABLE GO-SPACES

H. R. Bennett

Conditions which force the metrizability of GO-spaces are well known (see [Fa]). Since GO-spaces are T_3 -spaces and countable GO-spaces are first countable it follows that countable GO-spaces are metrizable. However it is not always apparent what a metric is for a given metrizable G)-space even if it is countable. For example the Sorgenfry line [S] restricted to the set of rational numbers or, if $\alpha < \omega_1$, the LOTS $[0,\alpha]$ are both countable and, thus, metrizable but it is difficult to construct a metric for either of these spaces ([A]). In this note a metric is derived for GO-spaces.

A LOTS (= linearly ordered topological space) is a triple $(X,\lambda(\leq),\leq)$ where (X,\leq) is a linearly ordered set and $\lambda(\leq)$ is the usual open-interval topology generated by the order <.

Recall that a subset A of X is order-convex if whenever a and b are in A, then each point lying between a and b is also in A.

A GO-space (= generalized ordered space) is a subspace of a LOTS (see [L]). There is an equivalent way to obtain a GO-space X by starting with a linearly-ordered set Y. Equip Y with a topology τ that contains λ (<) and has a base of open sets each of which is order-convex. In this case X is said to be constructed on Y and X = $GO_Y(R,E,I,L)$ where

$$I = \{x \in X | \{x\} \in \tau\},$$

$$R = \{x \in X - I | [x, \rightarrow [\in \tau],$$

$$L = \{x \in X - I |] \leftarrow, x] \in \tau\}, \text{ and}$$

$$E = X - (R \cup I \cup L).$$

See [L] for further notation.

In deriving a metric for a metrizable GO-space it is illuminating to first derive a metric for a countable GO-space case and then derive the metric for an arbitrary metrizable GO-space.

Let Q denote the LOTS of rational numbers and let N denote the set of natural numbers. An order \leq on a set X is a dense-order if whenever a,b \in X are such that a < b then there is a point c in X such that a < c < b.

The next theorem indicates how a GO-space may be embedded in a LOTS.

Theorem 1. If $X = GO_Y(R,E,I,L)$, then X is homeomorphic to a subspace of a dense-ordered LOTS L(X). Furthermore the homeomorphism is order-preserving and L(X) does not have any endpoints.

Proof. Let

$$L(X) = \{(x,q) | x \in I, q \in]-1,1[\cap Q \} \cup \{(x,q) | x \in R, q \in]-1,0] \cap Q \} \cup \{(x,q) | x \in L, q \in [0,1[\cap Q] \cup \{(x,0) | x \in E \}.$$

Equip L(X) with the lexicographic ordering induced from the order on X and the natural order on Q. It follows that L(X) is a dense-ordered LOTS without endpoints. Define a function ϕ from X into L(X) by ϕ (x) = (x,0). Then ϕ is an order-preserving homeomorphism from X into L(X).

Corollary. A countable GO-space X is homeomorphic to a subspace of Q by an order-preserving homeomorphism.

Proof. Since X is countable, L(X) is a countable, dense-ordered LOTS without endpoints. Hence L(X) is homeomorphic to Q by an order-preserving homeomorphism [Fr]. Thus X is homeomorphic to a subspace of Q by an order-preserving homeomorphism.

Since each countable GO-space X can be considered a subspace of Q the usual metric on Q restricted to X is a metric on X. Unfortunately it is often difficult to use this metric since it is hard to visualize the embedding.

Let X be a countable GO-space and ϕ be an order-preserving homeomorphism from X into L(X) and β be an order-preserving homeomorphism from L(X) onto Q. Notice that if $x \in R$ ($x \in L$) then there is an interval J in L(X) immediately preceding (succeeding) $\phi(x)$ such that no point of X maps into $\beta(J)$ and if $x \in I$ then there are intervals J_1 and J_2 in L(X) such that J_1 immediately precedes $\phi(x)$ and J_2 immediately succeeds $\phi(x)$ and no point of X maps into $\beta(J_1 \cup J_2)$. By considering Q homeomorphic to Q \(\text{Q}\) \[\]

Let k' be the collection of all maximal, nondegenerate, convex subsets of X - (R U L J I). Then k' is at most countable. Let K_1, K_2, \cdots be an enumeration of k' (without repetitions). Since each K_i is homeomorphic to a convex subset of Q it is metrizable. Let d_i be a metric for K_i

that is bounded by 1. Let x_1, x_2, \cdots be a counting of R U L U I.

These observations motivate the derivation of a metric for a countable GO-space.

To define the function on $X \times X$ compensation functions must be defined for the points of X. The motivation for these compensation functions comes from observing how X is embedded in Q and how one would "travel" in Q from point to point. Let

 $\phi_{\ell}(x) = \begin{cases} 2^{-n} & \text{if } x = x_n \in R \cup I \\ 0 & \text{if } x \in L \cup E \end{cases}$ $\phi_{r}(x) = \begin{cases} 2^{-n} & \text{if } x = x_n \in L \cup I \\ 0 & \text{if } x \in R \cup E. \end{cases}$

and

A metric function σ can be defined on X \times X. Although it is not necessary it is convenient to consider cases. Let a < b.

Case 1. If $\{a,b\} \subseteq \bigcup \mathcal{K}$ and both lie in the same K_i let $\sigma(a,b) = d_i(a,b) \cdot 2^{-1}$

and if
$$a \in K_i$$
 and $b \in K_j$ for $i \neq j$, then let
$$\sigma(a,b) = \sup\{2^{-1} \cdot d_i(a,z) | a < z,z \in K_i\} + \\ \Sigma\{2^{-n} | K_n \subset a,b[\} + \\ \Sigma\{\sigma_{\ell}(x) + \phi_r(x) | a < x < b\} + \\ \sup\{2^{-j} \cdot d_j(z,b) | z < b,z \in K_j\}.$$

Case 2. If $a \in K_j$ and $b \notin UK$ then let $\sigma(a,b) = \sup\{2^{-j} \cdot d_j(a,z) \mid a < z,z \in K_j\} + \\ \Sigma\{2^{-n} \mid K_n \subset]a,b[\} + \\ \Sigma\{\phi_k(x) + \phi_r(x) \mid a < x < b\} + \\ \phi_\ell(b).$

If a \mathscr{G} U \mathscr{K} and b \in K_j, then let $\sigma(a,b) = \phi_r(a) + \Sigma\{2^{-n} | K_n \subset [a,b[\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x < b\} + \Sigma\{\phi_{\varrho}(x) + \phi_r(x) | a < x <$

Case 3. If neither a nor b is in UK, then let $\sigma(a,b) = \phi_r(a) + \Sigma\{2^{-n} | K_n \subset]a,b[\} + \\ \Sigma\{\phi_{\ell}(x) + \phi_r(x) | a < x < b\} + \\ \phi_{\ell}(b).$

 $\sup\{2^{-1} \cdot d_i(z,b) | z < b, z \in K_i\}.$

Furthermore let $\sigma(a,b) = 0$ if and only if a = b and let $\sigma(a,b) = \sigma(b,a)$ for a and b in X.

Theorem 1. If X is a countable GO-space, then σ is a metric on X.

Proof. Since each of the series used in defining σ is bounded by the convergent series $2 \cdot \Sigma 2^{-n}$, it follows that σ is well-defined. Since σ was constructed to be a metric function it is just a matter of cases to check that σ defines the topology. Let $S_{\sigma}(x,\epsilon)$ denote the sphere centered at x whose σ -radius is ϵ .

Case 1. If $x_n \in I$, then $S_{\sigma}(x_n, 2^{-n}) = \{x_n\}$.

Case 2. Let $\mathbf{x}_n \in \mathbf{R}$ and $\mathbf{S}_{\sigma}(\mathbf{x}_n, \epsilon)$ be given. Since $\mathbf{x}_n \in \mathbf{R}$ choose $\mathbf{x} \in \mathbf{X}$ such that $\mathbf{x}_n < \mathbf{x}$ and $\mathbf{x} \in \mathbf{S}_{\sigma}(\mathbf{x}_n, \epsilon)$. Then $[\mathbf{x}_n, \mathbf{x}] \subset \mathbf{S}_{\sigma}(\mathbf{x}_n, \epsilon)$.

Let $[x_n,x[$ be given. If $\sigma(x_n,x)=\varepsilon_1$, let $\varepsilon=\min\{2^{-n},\varepsilon_1\}$. Then $[x_n,x[\supset S_\sigma(x_n,\varepsilon)]$.

Case 3. If $x_n \in L$ argue analogously to Case 2.

 $\textit{Case 4.} \quad \text{If } \mathbf{x}_n \text{ } \in \text{ E then argue on each side of } \mathbf{x}_n$ using Case 2 and Case 3.

Hence σ is a metric for X.

If R U L U I is dense in X then the metric σ is much less simple as the next two examples illustrate.

Example 1. Let X be the Sorgenfrey Line restricted to Q, that is, $\mathrm{GO}_{\mathbb{Q}}(\mathbb{Q},\Phi,\Phi,\Phi)$. Let $\mathrm{q}_1,\mathrm{q}_2,\cdots$ be a counting of Q. Then, for each $\mathrm{k}\in\mathbb{N}$, $\phi_{\mathbb{k}}(\mathrm{q}_{\mathrm{k}})=2^{-\mathrm{k}}$ and $\phi_{\mathbf{r}}(\mathrm{q}_{\mathrm{k}})=0$. Thus if $\mathrm{q}_{\mathrm{n}}<\mathrm{q}_{\mathrm{m}}$, it follows that

$$\sigma \, ({\bf q}_n^{}, {\bf q}_m^{}) \ = \ \Sigma \, \{ \, {\bf 2}^{-k} \, \big| \, {\bf q}_n^{} \ < \ {\bf q}_k^{} \ \underline{<} \ {\bf q}_m^{} \} \, .$$

Example 2. Let X be the LOTS $[1,\alpha)$ where $\alpha<\omega_1$. Then $R=E=\Phi$. Let x_1,x_2,\cdots be a counting of $[1,\alpha)$. Then if x_k is a non-limit ordinal $\phi_r(x_k)=\phi_\ell(x_k)=2^{-k}$ and if x_k is a limit ordinal $\phi_\ell(x_k)=0$ and $\phi_r(x_n)=2^{-n}$. Hence, if $x_n< x_m$, then

$$\sigma(\mathbf{x}_{n}, \mathbf{x}_{m}) = \phi_{\mathbf{r}}(\mathbf{x}_{n}) + \Sigma \{\phi_{\mathbf{r}}(\mathbf{x}) + \phi_{\ell}(\mathbf{x}) \mid \mathbf{x}_{n} < \mathbf{x} < \mathbf{x}_{m}\} + \phi_{\ell}(\mathbf{x}_{m}).$$

The following corollary easily follows.

Corollary. If R U L U I is dense in the countable $\label{eq:GO-space} \text{GO-space X then}$

$$\sigma(a,b) = \phi_{\mathbf{r}}(a) + \Sigma\{\phi_{\mathbf{r}}(\mathbf{x}) + \phi_{\varrho}(\mathbf{x}) | a < \mathbf{x} < b\} + \phi_{\varrho}(b)$$

is a metric for X.

The countable GO-space case motivates the metrizable GO-space case by realizing the countable GO-spaces are σ -discrete.

The following theorem gives structural conditions for the metrizability of a given GO-space.

Theorem 2 [Fa]. Let X be a GO-space. The following properties are equivalent.

- (i) X is metrizable, and
- (ii) There is a dense, σ -discrete set D in X containing R U L.

It follows from this result that if X is a metrizable GO-space then each of R and L are σ -discrete in X. Since I is open in X it is an F_{σ} -set and, hence, a σ -discrete set.

Let R = U{R_n|n = 1,2,...}, L = U{L_n|n = 1,2,...} and $I = U{I_n|n = 1,2,...} \text{ where for each } n, R_n \subseteq R_{n+1},$ $L_n \subseteq L_{n+1} \text{ and } I_n \subseteq I_{n+1}.$

If $X = GO_Y(R,E,I,L)$ is a metrizable GO-space where Y is a metric LOTS with metric d then in order to find a metric for X compensation functions must be found (as in the countable case). This is motivated by embedding X in L(X) and observing how one "travels" from point to point. If $x \le y$, let $R(x,y) = 2^{-i}$, where i is the first natural number such that $R_i \cap [x,y] \ne \emptyset$. If no such i exists let R(x,y) = 0. Let $L(x,y) = 2^{-j}$ where j is the first natural number such that $L_j \cap [x,y] \ne \emptyset$. If no such j exists let L(x,y) = 0. If x < y let $L(x,y) = 2^{-k}$ where k is the first natural number such that $L_K \cap [x,y] \ne \emptyset$. If no such k exists or if x = y let L(x,y) = 0.

Let

 $\rho\left(y,x\right) = \rho\left(x,y\right) = d\left(x,y\right) + R\left(x,y\right) + L\left(x,y\right) + I\left(x,y\right).$ It is a matter of checking cases to see that ρ is a metric function on X. Notice if $y_1 < y_2$ and $x < y_1$ then $\rho\left(x,y_1\right) \leq \rho\left(x,y_2\right).$

Theorem 2. Let Y be a LOTS with metric d and $X = GO_{\underline{Y}}(R,E,I,L) \ \ be \ \ a \ \ metrizable \ G) - space. \ \ Then \ \rho, \ defined above, is a metric on X.$

Proof. All that needs to be shown is that ρ preserves the topology on X. Consider the following cases:

- (i) If $x \in I$ then let k be the first natural number such that $x \notin I_k$. It follows that $S_o(x,2^{-k}) = \{x\}$.
- (ii) If $x \in R$ and $S_{\rho}(x,\epsilon)$ is given, choose the first natural number n such that $3 \cdot 2^{-n} < \epsilon \cdot 2^{-2}$. Let $K_n = \bigcup \{R_i \cup L_i \cup I_i \big| i = 1, \cdots, n \}. \text{ Choose } y > x \text{ such that } d(x,y) < \epsilon \cdot 2^{-2} \text{ and }]x,y[\cap K_n = \Phi. \text{ This can be done since } K_n \text{ is discrete and } x \in R. \text{ It follows that } \rho(x,y) < \epsilon \cdot 2^{-2} + 3 \cdot \epsilon \cdot 2^{-2} = \epsilon. \text{ Thus } [x,y[\subset S_{\rho}(x,\epsilon).$

If [x,b[is given let n be the first natural number such that $x \in R_n$. Let $\varepsilon = \min\{d(x,b),2^{-n}\}$. Then $S_0(x,\varepsilon) \subseteq [x,b[$.

- (iii) If $x \in L$ argue analogously to (ii).
 - (iv) If $x \in E$ combine (ii) and (iii).

Hence $\boldsymbol{\rho}$ preserves the topology on X and, hence, is a metric for X.

Corollary. If R U L U I is dense in the metrizable GO-space X then

$$\rho(x,y) = R(x,y) + L(x,y) + I(x,y)$$

is a metric on X.

Let E denote the real line with the usual order topology.

Example 3. Let $X=GO_E(Q,E-Q,\Phi,\Phi)$ and let q_1,q_2,\cdots be any counting of the rational numbers. Then

$$\rho(x,y) = R(x,y) = 2^{-j}$$

(where q_j is the first rational number in]x,y]) is a metric on X.

If $Y=GO_Q(Q,\Phi,\Phi,\Phi)$ (i.e., the Sorgenfrey Line) then the above ρ is a metric on Y that is simpler than the metric given in Example 1.

References

- [A] D. R. Anderson, Metric in half-open interval topology, Amer. Math. Monthly 77 (1970), Advanced problem 5694.
- [Fa] M. J. Faber, Metrizability in generalized ordered spaces, Math. Centre Tract 53.
- [Fr] M. Fréchet, Les dimensions d'un ensemble abstrait, Math. Ann. 68 (1910), 145-168.
 - [L] D. J. Lutzer, On generalized ordered spaces, Dissertations Math. 89 (1971), 1-36.
- [S] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631-632.

Texas Tech University
Lubbock, Texas 79409