TOPOLOGY
PROCEEDINGS

Volume 9, 1984
Pages 217-225

http://topology.auburn.edu/tp/

A METRIC FOR METRIZABLE
GO-SPACES

by

H. R. BENNETT

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@Qauburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



TOPOLOGY PROCEEDINGS Volume 9 1984 217

A METRIC FOR METRIZABLE GO-SPACES

H. R. Bennett

Conditions which force the metrizability of GO-spaces
are well known (see [Fal). Since GO-spaces are T3-spaces
and countable GO-spaces are first countable it follows
that countable GO-spaces are metrizable. However it is not
always apparent what a metric is for a given metrizable
G)-space even if it is countable. For example the Sorgen-
fry line [S] restricted to the set of rational numbers or,

if o < w the LOTS [0,a] are both countable and, thus,

17
metrizable but it is difficult to construct a metric for
either of these spaces ([A]). 1In this note a metric is
derived for GO-spaces.

A LOTS (= linearly ordered topological space) is a
triple (X,X(<),<) where (X,<) is a linearly ordered set
and A (<) is the usual open-interval topology generated by
the order <.

Recall that a subset A of X is order-convex if when-
ever a and b are in A, then each point lying between a and
b is also in A.

A GO-space (= generalized ordered space) is a subspace
of a LOTS (see [L]). There is an equivalent way to obtain
a GO-space X by starting with a linearly-ordered set Y.
Equip Y with a topology T that contains A (<) and has a
base of open sets each of which is order-convex. In this
case X is said to be constructed on Y and X = GOY(R,E,I,L)

where
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I={x¢€ x|{x} € 1},

R=1{x€ x - 1|I[x,»[ € 1},
L={x€ X - 1I|l«,x] € t}, and
E=X- (RUTIUL.

See [L] for further notation.

In deriving a metric for a metrizable GO-space it is
illuminating to first derive a metric for a countable
GO-space case and then derive the metric for an arbitrary
metrizable GO-space.

Let Q denote the LOTS of rational numbers and let N
denote the set of natural numbers. An order < on a set X
is a dense-order if whenever a,b € X are such that a < b
then there is a point ¢ in X such that a < ¢ < b.

The next theorem indicates how a GO-space may be

embedded in a LOTS.

Theorem 1. If X = GOy(R,E,I,L), then X 18 homeomorphic
to a subspace of a dense-ordered LOTS L(X). Furthermore
the homeomorphism is order-preserving and L(X) does not
have any endpoints.

Proof. Let

L(X) = {(x,q9)|x € I, € ]-1,1[ n Q} U

{(x,9)|x € R,g € 1-1,0] n Q} u

{(x,9)|x € L,q € [0,1[ nQ} U

{(x,0)|x € E}.
Equip L(X) with the lexicographic ordering induced from the
order on X and the natural order on Q. It follows that
L(X) is a dense-ordered LOTS without endpoints. Define
a function ¢ from X into L(X) by ¢(x) = (x,0). Then ¢ is

an order-preserving homeomorphism from X into L(X).
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Corollary. A countable GO-space X is homeomorphic
to a subspace of Q by an order-preserving homeomorphism.
Proof. Since X is countable, L(X) is a countable,
dense-ordered LOTS without endpoints. Hence L(X) is
homeomorphic to Q by an order-preserving homeomorphism [Fr].
Thus X is homeomorphic to a subspace of Q by an order-

preserving homeomorphism.

Since each countable GO-space X can be considered a
subspace of Q the usual metric on Q restricted to X is a
metric on X. Unfortunately it is often difficult to use
this metric since it is hard to visualize the embedding.

Let X be a countable GO-space and ¢ be an order-
preserving homeomorphism from X into L(X) and B be an
order-preserving homeomorphism from L(X) onto Q. Notice
that if X € R (x € L) then there is an interval J in L(X)
immediately preceding (succeeding) ¢ (x) such that no point
of X maps into B(J) and if x € I then there are intervals

J, and J, in L(X) such that J

1 2 1

and J2 immediately succeeds ¢ (x) and no point of X maps

immediately precedes ¢ (x)

into B(Jl U J2). By considering Q homeomorphic to
QN ]0,1[ and embedding X in Q n ]0,1[ it follows that the
image of those intervals in Q N ]10,1[ must be made arbi-
trarily small if |[R U L U I| is large.

Let K be the collection of all maximal, nondegenerate,
convex subsets of X - (RU L U I). Then K is at most

countable. Let K «++ be an enumeration of K (without

lIKzl
repetitions). Since each Ki is homeomorphic to a convex

subset of Q it is metrizable. Let di be a metric for Ki
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that is bounded by 1. Let XXy, oo be a counting of
RULU I.

These observations motivate the derivation of a metric
for a countable GO-space.

To define the function on X X X compensation functions
must be defined for the points of X. The motivation for
these compensation functions comes from observing how X
is embedded in Q and how one would "travel” in Q from point

to point. Let

270 if x = x € RUI
0,00 = {
0 if x € L UE
and -n
2 if x=x €LUI
¢r(x) = {
0 if x € RU E.

A metric function o can be defined on X x X. Although
it is not necessary it is convenient to consider cases.

Let a < b.

Case 1. 1If {a,b} < UK and both lie in the same Ki let
o(a,b) = d;(a,b) » 277
and if a € K; and b € Ky for i ¥ j, then let
o(a,b) = sup{2”! - d,(a,z)|a < z,z € K;} +
z{z‘“|xn c la,b[} +
t{og(x) + ¢ _(x)|a < x < Db} +

Sup{z_j . dj(z,b)|z < b,z € Kj}.

Case 2. 1If a € Kj and b £ U then let

o(a,b)

Sup{z'j . dj(a,z)|a < z,z € Kj} +
22|k < Ja,bl} +
2{¢Z(X) + ¢r(x)|a < x < b} +

o, (b) .
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If a ¢ UK and b € Ky, then let
o(a,b) = ¢ _(a) + ${277|K_ < la,bl} +
Z{¢, (x) + ¢r(x)|a < x < b} +

sup{2™ - 4, (z,b)|z < b,z € K,}.

Case 3. 1If neither a nor b is in UK, then let
o(a,b) = ¢ (a) + z{27"|k_ < Ja,bl} +
Z{¢2(x) + ¢r(x)|a < x < b} +
¢2(b).
Furthermore let o(a,b) = 0 if and only if a = b and

let o(a,b) = o(b,a) for a and b in X.

Theorem 1. If X is a countable GO-space, then o0 is
a metric on X.

Proof. Since each of the series used in defining o
is bounded by the convergent series 2 - 22'“, it follows
that o is well-~defined. Since o was constructed to be a
metric function it is just a matter of cases to check that

o defines the topology. Let So(x,e) denote the sphere

centered at x whose o-radius is .

-n, _
Case 1. 1If X € I, then So(xn,2 ) = {xn}.

Case 2. Let X, € R and So(xn,e) be given. Since
X, € R choose x € X such that X, <X and x € So(xn,e).

Then [xn,x[ c So(xn,s).

Let [xn,x[ be given. If o(xn,x) = €y let

€ = min{Z-n,el}. Then [xn,x[ ) Sg(xn,e).

Case 3. 1If o € L argue analogously to Case 2.
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Case 4. 1If X, € E then argue on each side of X,

using Case 2 and Case 3.
Hence 0 is a metric for X.

If RU LU I is dense in X then the metric ¢ is much

less simple as the next two examples illustrate.

Example 1. Let X be the Sorgenfrey Line restricted
to Q, that is, GOQ(Q,¢,®,®). Let dy:9y,°°" be a counting

of Q. Then, for each k € N, ¢,(q) = 27k

and ¢r(qk) = 0.
Thus if q, < 9 it follows that

-k
ola ,qy) = Z{27q, < q < qp}.

Example 2. Let X be the LOTS [1l,a) where a < Wy .

«++ be a counting of [1,a).

Then R = E = &, Let X1rXo
. . L. . _ _ -k

Then if X is a non-limit ordinal ¢r(xk) = ¢£(Xk) =2 and
. . C . . _ _ ,»-n
if Xy is a limit ordinal ¢2(xk) = 0 and ¢r(xn) =2 7.
Hence, if x_ < x_, then

n m

olx ,x ) = ¢ (x ) + 2{¢r(x) +

¢l(X)|xn <x <x }o+oo,(x).
The following corollary easily follows.

Corollary. If RU L U I is dense in the countable
GO-space X then
o(a,b) = ¢ _(a) + I{¢ _(x) +
¢2(x)|a < X < b} + ¢, (b)

18 a metric for X.

The countable GO-space case motivates the metrizable
GO-space case by realizing the countable GO-spaces are

o-discrete.
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The following theorem gives structural conditions for

the metrizability of a given GO-space.

Theorem 2 [Fal. Let X be a GO-space. The following
properties are equivalent.
(i) X Zs metrizable, and
(ii) There is a demnse, o-discrete set D in X containing

R U L.

It follows from this result that if X is a metrizable
GO-space then each of R and L are o-discrete in X. Since
I is open in X it is an Fo-set and, hence, a o-discrete

set.

Let R = U{Rn|n =1,2,°+°}, L = U{Ln|n 1,2,--+} and

I =vu{1 |n=1,2,-++} where for each n, R SR/
Ln = Ln+l and In = In+l'

If X = GOY(R,E,I,L) is a metrizable GO-space where Y
is a metric LOTS with metric d then in order to find a
metric for X compensation functions must be found (as in
the countable case). This is motivated by embedding X in
L(X) and observing how one "travels" from point to point.
If x <y, let R(x,y) = 2—i, where i is the first natural
number such that Ri n lx,yl] # #. If no such i exists let
R(x,y) = 0. Let L(x,y) = 2_j where j is the first natural
number such that Lj n [x,yl # #. If no such j exists let
L(x,y) = 0. If x <y let I(x,y) = 27X where k is the
first natural number such that I, n [x,y] # ¢. If no such

K
k exists or if x = y let I(x,y) = 0.
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Let
p(y,x) = p(x,y) = d(x,y) + R(x,y) + L(x,y) + I(x,y).
It is a matter of checking cases to see that p is a metric

function on X. Notice if ¥y < Yy and x < Yy then

p(x,yy) < p(x,y,).

Theorem 2. Let Y be a LOTS with metric d and
X = GOY(R,E,I,L) be a metrizable G)-space. Then p, defined
above, is a metric on X.

Proof. All that needs to be shown is that p preserves
the topology on X. Consider the following cases:

(i) If x € I then let k be the first natural number
such that x ¢ Ig- It follows that Sp(x,Z_k) = {x}.

(ii) If x € R and Sp(x,e) is given, choose the first
-2

Let

270 e .2

natural number n such that 3 -
K, =U{R, UL, UIJi=1,"++,n}. Choosey > x such that
d(x,y) < € - 2-2 and lx,y[ N Kn = &. This can be done

since Kn is discrete and x € R. It follows that

p(x,y) <€ - 2_2 + 3 ¢+ g » 2-2 = ¢. Thus [x,y[ < Sp(x,e).
If [x,b[ is given let n be the first natural number
such that x € R . Let e = min{d(x,b),Z_n}. Then

Sp(x,e) c [x,bl.
(iii) If x € L argue analogously to (ii).
(iv) If x € E combine (ii) and (iii).
Hence p preserves the topology on X and, hence, is a

metric for X.
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Corollary. If RU L U I is dense in the metrizable
GO-space X then
p(x,y) = R(x,y) + L(x,y) + I(x,y)

18 a metric on X.

Let E denote the real line with the usual order

topology.

Example 3. Let X = GOE(Q,E—Q,¢,¢) and let dyrQdyrcc
be any counting of the rational numbers. Then
o(x,y) = R(x,y) = 273
(where qj is the first rational number in ]x,y]) is a metric
on X.
If Y = GOQ(Q,¢,¢,®) (i.e., the Sorgenfrey Line) then
the above p is a metric on Y that is simpler than the

metric given in Example 1.
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