A METRIC FOR METRIZABLE
GO-SPACES

by

H. R. BENNETT
A METRIC FOR METRIZABLE GO-SPACES

H. R. Bennett

Conditions which force the metrizability of GO-spaces are well known (see [Fa]). Since GO-spaces are T_3-spaces and countable GO-spaces are first countable it follows that countable GO-spaces are metrizable. However it is not always apparent what a metric is for a given metrizable GO-space even if it is countable. For example the Sorgenfrey line [S] restricted to the set of rational numbers or, if $a < \omega_1$, the LOTS $[0,a]$ are both countable and, thus, metrizable but it is difficult to construct a metric for either of these spaces ([A]). In this note a metric is derived for GO-spaces.

A LOTS (= linearly ordered topological space) is a triple $(X, \lambda(\leq), \leq)$ where (X, \leq) is a linearly ordered set and $\lambda(\leq)$ is the usual open-interval topology generated by the order \leq.

Recall that a subset A of X is order-convex if whenever a and b are in A, then each point lying between a and b is also in A.

A GO-space (= generalized ordered space) is a subspace of a LOTS (see [L]). There is an equivalent way to obtain a GO-space X by starting with a linearly-ordered set Y. Equip Y with a topology τ that contains $\lambda(\leq)$ and has a base of open sets each of which is order-convex. In this case X is said to be constructed on Y and $X = \text{GO}_Y(R,E,I,L)$ where
In deriving a metric for a metrizable GO-space it is illuminating to first derive a metric for a countable GO-space case and then derive the metric for an arbitrary metrizable GO-space.

Let \(Q \) denote the LOTS of rational numbers and let \(N \) denote the set of natural numbers. An order \(\leq \) on a set \(X \) is a dense-order if whenever \(a, b \in X \) are such that \(a < b \) then there is a point \(c \) in \(X \) such that \(a < c < b \).

The next theorem indicates how a GO-space may be embedded in a LOTS.

Theorem 1. If \(X = GO(R, E, I, L) \), then \(X \) is homeomorphic to a subspace of a dense-ordered LOTS \(L(X) \). Furthermore the homeomorphism is order-preserving and \(L(X) \) does not have any endpoints.

Proof. Let

\[
L(X) = \{(x, q) | x \in I, q \in]-1,1[\cap Q \} \cup \\
\{(x, q) | x \in R, q \in]-1,0[\cap Q \} \cup \\
\{(x, q) | x \in L, q \in [0,1[\cap Q \} \cup \\
\{(x, 0) | x \in E \}.
\]

Equip \(L(X) \) with the lexicographic ordering induced from the order on \(X \) and the natural order on \(Q \). It follows that \(L(X) \) is a dense-ordered LOTS without endpoints. Define a function \(\phi \) from \(X \) into \(L(X) \) by \(\phi(x) = (x, 0) \). Then \(\phi \) is an order-preserving homeomorphism from \(X \) into \(L(X) \).
Corollary. A countable GO-space X is homeomorphic to a subspace of Q by an order-preserving homeomorphism.

Proof. Since X is countable, $L(X)$ is a countable, dense-ordered LOTS without endpoints. Hence $L(X)$ is homeomorphic to Q by an order-preserving homeomorphism [Fr]. Thus X is homeomorphic to a subspace of Q by an order-preserving homeomorphism.

Since each countable GO-space X can be considered a subspace of Q the usual metric on Q restricted to X is a metric on X. Unfortunately it is often difficult to use this metric since it is hard to visualize the embedding.

Let X be a countable GO-space and ϕ be an order-preserving homeomorphism from X into $L(X)$ and β be an order-preserving homeomorphism from $L(X)$ onto Q. Notice that if $x \in R$ ($x \in L$) then there is an interval J in $L(X)$ immediately preceding (succeeding) $\phi(x)$ such that no point of X maps into $\beta(J)$ and if $x \in I$ then there are intervals J_1 and J_2 in $L(X)$ such that J_1 immediately precedes $\phi(x)$ and J_2 immediately succeeds $\phi(x)$ and no point of X maps into $\beta(J_1 \cup J_2)$. By considering Q homeomorphic to $Q \cap [0,1[$ and embedding X in $Q \cap [0,1[$ it follows that the image of those intervals in $Q \cap [0,1[$ must be made arbitrarily small if $|R \cup L \cup I|$ is large.

Let K be the collection of all maximal, nondegenerate, convex subsets of $X - (R \cup L \cup I)$. Then K is at most countable. Let K_1, K_2, \ldots be an enumeration of K (without repetitions). Since each K_i is homeomorphic to a convex subset of Q it is metrizable. Let d_i be a metric for K_i.
that is bounded by 1. Let \(x_1, x_2, \ldots \) be a counting of \(R \cup L \cup I \).

These observations motivate the derivation of a metric for a countable GO-space.

To define the function on \(X \times X \), compensation functions must be defined for the points of \(X \). The motivation for these compensation functions comes from observing how \(X \) is embedded in \(Q \) and how one would "travel" in \(Q \) from point to point. Let

\[
\phi_\ell(x) = \begin{cases}
2^{-n} & \text{if } x = x_n \in R \cup I \\
0 & \text{if } x \in L \cup E
\end{cases}
\]

and

\[
\phi_r(x) = \begin{cases}
2^{-n} & \text{if } x = x_n \in L \cup I \\
0 & \text{if } x \in R \cup E.
\end{cases}
\]

A metric function \(\sigma \) can be defined on \(X \times X \). Although it is not necessary it is convenient to consider cases. Let \(a < b \).

Case 1. If \(\{a, b\} \subseteq UI \) and both lie in the same \(K_i \) let

\[
\sigma(a, b) = d_i(a, b) \cdot 2^{-1}
\]

and if \(a \in K_i \) and \(b \in K_j \) for \(i \neq j \), then let

\[
\sigma(a, b) = \sup \{2^{-1} \cdot d_i(a, z) \mid a < z, z \in K_i\} + \\
\varepsilon\{2^{-n} \mid K_n \subseteq [a, b]\} + \\
\varepsilon\{\phi_\ell(x) + \phi_r(x) \mid a < x < b\} + \\
\sup \{2^{-j} \cdot d_j(z, b) \mid z < b, z \in K_j\}.
\]

Case 2. If \(a \in K_j \) and \(b \notin UI \) then let

\[
\sigma(a, b) = \sup \{2^{-j} \cdot d_j(a, z) \mid a < z, z \in K_j\} + \\
\varepsilon\{2^{-n} \mid K_n \subseteq [a, b]\} + \\
\varepsilon\{\phi_\ell(x) + \phi_r(x) \mid a < x < b\} + \\
\phi_\ell(b).
\]
If \(a \not\in \cup K \) and \(b \in K_j \), then let
\[
\sigma(a,b) = \phi_\bar{x}(a) + \sum \{2^{-n}|K_n \subseteq \{a,b\} + \\
\sum \{\phi_k(x) + \phi_\bar{x}(x)|a < x < b\} + \\
\sup \{2^{1-n} \cdot d_\bar{z}(z,b)|z < b, z \in K_i\}.
\]

Case 3. If neither \(a \) nor \(b \) is in \(\cup K \), then let
\[
\sigma(a,b) = \phi_\bar{x}(a) + \sum \{2^{-n}|K_n \subseteq \{a,b\} + \\
\sum \{\phi_k(x) + \phi_\bar{x}(x)|a < x < b\} + \\
\phi_k(b).
\]
Furthermore let \(\sigma(a,b) = 0 \) if and only if \(a = b \) and let \(\sigma(a,b) = \sigma(b,a) \) for \(a \) and \(b \) in \(X \).

Theorem 1. If \(X \) is a countable GO-space, then \(\sigma \) is a metric on \(X \).

Proof. Since each of the series used in defining \(\sigma \) is bounded by the convergent series \(2 \cdot \sum 2^{-n} \), it follows that \(\sigma \) is well-defined. Since \(\sigma \) was constructed to be a metric function it is just a matter of cases to check that \(\sigma \) defines the topology. Let \(S_\sigma(x,\varepsilon) \) denote the sphere centered at \(x \) whose \(\sigma \)-radius is \(\varepsilon \).

Case 1. If \(x_n \in I \), then \(S_\sigma(x_n,2^{-n}) = \{x_n\} \).

Case 2. Let \(x_n \in R \) and \(S_\sigma(x_n,\varepsilon) \) be given. Since \(x_n \in R \) choose \(x \in X \) such that \(x_n < x \) and \(x \in S_\sigma(x_n,\varepsilon) \). Then \([x_n,x[\subseteq S_\sigma(x_n,\varepsilon) \).

Let \([x_n',x[\) be given. If \(\sigma(x_n',x) = \varepsilon_\bot \), let
\[
\varepsilon = \min\{2^{-n},\varepsilon_\bot\}.
\]
Then \([x_n',x[\supset S_\sigma(x_n',\varepsilon) \).

Case 3. If \(x_n \in L \) argue analogously to Case 2.
Case 4. If $x_n \in E$ then argue on each side of x_n using Case 2 and Case 3.

Hence σ is a metric for X.

If $R \cup L \cup I$ is dense in X then the metric σ is much less simple as the next two examples illustrate.

Example 1. Let X be the Sorgenfrey Line restricted to Q, that is, $GO_Q(Q, \phi, \phi, \phi)$. Let q_1, q_2, \cdots be a counting of Q. Then, for each $k \in \mathbb{N}$, $\phi_q(q_k) = 2^{-k}$ and $\phi_r(q_k) = 0$.

Thus if $q_n < q_m$, it follows that

$$\sigma(q_n, q_m) = \Sigma(2^{-k} | q_n < q_k < q_m).$$

Example 2. Let X be the LOTS $[l, a)$ where $a < \omega_1$. Let x_1, x_2, \cdots be a counting of $[l, a)$. Then if x_ξ is a non-limit ordinal $\phi_r(x_\xi) = \phi_\xi(x_\xi) = 2^{-\xi}$ and if x_ξ is a limit ordinal $\phi_\xi(x_\xi) = 0$ and $\phi_r(x_\xi) = 2^{-n}$. Hence, if $x_n < x_m$, then

$$\sigma(x_n, x_m) = \phi_r(x_n) + \Sigma(\phi_r(x) + \phi_\xi(x) | x_n < x < x_m) + \phi_\xi(x_m).$$

The following corollary easily follows.

Corollary. If $R \cup L \cup I$ is dense in the countable GO-space X then

$$\sigma(a, b) = \phi_r(a) + \Sigma(\phi_r(x) + \phi_\xi(x) | a < x < b) + \phi_\xi(b)$$

is a metric for X.

The countable GO-space case motivates the metrizable GO-space case by realizing the countable GO-spaces are σ-discrete.
The following theorem gives structural conditions for the metrizability of a given GO-space.

Theorem 2 [Fa]. Let X be a GO-space. The following properties are equivalent.

(i) X is metrizable, and

(ii) There is a dense, σ-discrete set D in X containing $R \cup L$.

It follows from this result that if X is a metrizable GO-space then each of R and L are σ-discrete in X. Since I is open in X it is an F_σ-set and, hence, a σ-discrete set.

Let $R = \bigcup \{R_n | n = 1, 2, \ldots \}$, $L = \bigcup \{L_n | n = 1, 2, \ldots \}$ and $I = \bigcup \{I_n | n = 1, 2, \ldots \}$ where for each n, $R_n \subseteq R_{n+1}$, $L_n \subseteq L_{n+1}$ and $I_n \subseteq I_{n+1}$.

If $X = GO_y(R,E,I,L)$ is a metrizable GO-space where Y is a metric LOTS with metric d then in order to find a metric for X compensation functions must be found (as in the countable case). This is motivated by embedding X in $L(X)$ and observing how one "travels" from point to point. If $x \leq y$, let $R(x,y) = 2^{-i}$, where i is the first natural number such that $R_i \cap [x,y] \neq \emptyset$. If no such i exists let $R(x,y) = 0$. Let $L(x,y) = 2^{-j}$ where j is the first natural number such that $L_j \cap [x,y] \neq \emptyset$. If no such j exists let $L(x,y) = 0$. If $x < y$ let $I(x,y) = 2^{-k}$ where k is the first natural number such that $I_k \cap [x,y] \neq \emptyset$. If no such k exists or if $x = y$ let $I(x,y) = 0$.
Let
\[\rho(y,x) = \rho(x,y) = d(x,y) + R(x,y) + L(x,y) + I(x,y). \]
It is a matter of checking cases to see that \(\rho \) is a metric function on \(X \). Notice if \(y_1 < y_2 \) and \(x < y_1 \) then
\[\rho(x,y_1) \leq \rho(x,y_2). \]

Theorem 2. Let \(Y \) be a LOTS with metric \(d \) and \(X = \text{GO}_Y(R,E,I,L) \) be a metrizable \(G \)-space. Then \(\rho \), defined above, is a metric on \(X \).

Proof. All that needs to be shown is that \(\rho \) preserves the topology on \(X \). Consider the following cases:

(i) If \(x \in I \) then let \(k \) be the first natural number such that \(x \notin I_k \). It follows that \(S_\rho(x,2^{-k}) = \{x\} \).

(ii) If \(x \in R \) and \(S_\rho(x,\epsilon) \) is given, choose the first natural number \(n \) such that \(3 \cdot 2^{-n} < \epsilon \cdot 2^{-2} \). Let \(K_n = \bigcup \{ R_i \cup L_i \cup I_i \mid i = 1, \ldots, n \} \). Choose \(y > x \) such that \(d(x,y) < \epsilon \cdot 2^{-2} \) and \(\|x,y\| \cap K_n = \emptyset \). This can be done since \(K_n \) is discrete and \(x \in R \). It follows that \(\rho(x,y) < \epsilon \cdot 2^{-2} + 3 \cdot \epsilon \cdot 2^{-2} = \epsilon \). Thus \(\|x,y\| \in S_\rho(x,\epsilon) \).

If \(\{x,b\} \) is given let \(n \) be the first natural number such that \(x \in R_n \). Let \(\epsilon = \min\{d(x,b),2^{-n}\} \). Then \(S_\rho(x,\epsilon) \subseteq \{x,b\} \).

(iii) If \(x \in L \) argue analogously to (ii).

(iv) If \(x \in E \) combine (ii) and (iii).

Hence \(\rho \) preserves the topology on \(X \) and, hence, is a metric for \(X \).
Corollary. If \(R \cup L \cup I \) is dense in the metrizable GO-space \(X \) then

\[
\rho(x, y) = R(x, y) + L(x, y) + I(x, y)
\]

is a metric on \(X \).

Let \(E \) denote the real line with the usual order topology.

Example 3. Let \(X = \text{GO}_E(Q, E - Q, \phi, \psi) \) and let \(q_1, q_2, \ldots \) be any counting of the rational numbers. Then

\[
\rho(x, y) = R(x, y) = 2^{-j}
\]

(where \(q_j \) is the first rational number in \(]x, y[\)) is a metric on \(X \).

If \(Y = \text{GO}_Q(Q, \phi, \psi) \) (i.e., the Sorgenfrey Line) then the above \(\rho \) is a metric on \(Y \) that is simpler than the metric given in Example 1.

References

Texas Tech University

Lubbock, Texas 79409