TOPOLOGY PROCEEDINGS

Volume 9, 1984

Pages 227-242

http://topology.auburn.edu/tp/

TYPES OF STRATEGIES IN POINT-PICKING GAMES

by

Andrew J. Berner

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

TYPES OF STRATEGIES IN POINT-PICKING GAMES¹

Andrew J. Berner

1. Introduction

The following ordinal game is defined in [B-J, Definition 1.1]:

Definition 1.1. If X is a topological space, and α is an ordinal, the game $\underline{G}^D_\alpha(X)$ is played in the following manner:

Two players take turns playing. A round consists of Player I choosing a non-empty open set $U \subset X$ and Player II choosing a point $x \in U$. A round is played for each ordinal less than α . Player I wins the game if the set of points Player II played is dense. Otherwise, Player II wins.

The formal definitions of strategies can be found in [B-J, Definitions 1.2, 1.3, 1.6 and Lemma 1.7]. Informally, a strategy for a player is a function from partial plays of the game that tells a player what to play on her next turn; a winning strategy is, of course, one that guarantees a win if followed.

Definition 1.2 [B-J, Def. 1.4]. We write $\underline{I} + \underline{G}_{\alpha}^{D}(X)$ (read Player I wins $\underline{G}_{\alpha}^{D}(X)$) if there is a winning strategy for Player I in $\underline{G}_{\alpha}^{D}(X)$. $\underline{II} + \underline{G}_{\alpha}^{D}(X)$ is defined similarly. Also, we write $\underline{I} \not = \underline{G}_{\alpha}^{D}(X)$ (resp. $\underline{II} \not= \underline{G}_{\alpha}^{D}(X)$) if there is

 $^{^{\}rm l}{\rm This}$ work supported by funding from the O'Hara Chemical Sciences Institute of the University of Dallas.

no winning strategy for Player I (resp. Player II) in $G^D_{\alpha}(X)$. If I $\not\!\!\!/ G^D_{\alpha}(X)$ and II $\not\!\!\!/ G^D_{\alpha}(X)$, we say $G^D_{\alpha}(X)$ is neutral.

The main results concerning these games proved in [B-J] are:

- (a) If no non-empty open subset of X has a countable $\pi\text{-base}$ then I / $G^D_{\ \ \alpha}(X)$.
 - (b) If X is an HFD, then I \uparrow $G_{\omega \, \bullet \, \omega}^D \, (X) \, .$
- (c) $(\diamondsuit \Rightarrow)$ There is an HFD X such that II $/\!\!\!/ G_\omega^D(X)$, and thus (a) shows that $G_\omega^D(X)$ is neutral.
- (d) (CH \Rightarrow) There is an HFD X such that II \uparrow $G^D_\omega(X)$. The construction of this example forms the basis for Section 3 of this paper.

If Player I plays the elements of a π -base for X, Player II is forced to play a dense set. Thus ow(X) < π (X).

We will be interested in how much of the history of the game Player II needs to remember. Following the terminology of [G-T], a stationary strategy for a player is a strategy that depends only on the opponent's preceding move, and a Markov strategy for a player is one which depends only on the preceding move and the ordinal number of the round. More formally:

Definition 1.4. A winning stationary strategy for Player II in $\underline{G}_{\alpha}^{D}(X)$ is a function s: $\tau(X) \rightarrow X$ such that $s(U) \in U$ for every $U \in \tau(X)$ (where $\tau(X)$ is the set of

non-empty open subsets of X) and whenever $((U_{\beta},s(U_{\beta}): \beta < \alpha))$ is a play of the game, $\{s(U_{\beta}): \beta < \alpha\}$ is not dense. If Player II has a winning stationary strategy for $G_{\alpha}^{D}(X)$, we will write $\underline{II} +_{S} \underline{G_{\alpha}^{D}(X)}$.

Definition 1.5. A winning Markov strategy for Player II in $G_{\alpha}^{D}(X)$ is a function s: $\tau(X) \times \alpha \to X$ such that $s(U,\beta) \in U$ for every (U,β) in $\tau(X) \times \alpha$, and whenever $(U_{\beta},s(U_{\beta},\beta):\beta<\alpha)$ is a play of the game, $\{s(U_{\beta},\beta):\beta<\alpha\}$ is not dense. If Player II has a winning Markov strategy for $G_{\alpha}^{D}(X)$ we will write $\underline{II} +_{M} G_{\alpha}^{D}(X)$.

Definition 1.6. A uniform strategy for Player II in $\frac{G^D(X)}{G^D(X)} \text{ is a function s: } \tau(X)^{<\text{ow}(X)} \times \tau(X) \to X \text{ with s}((S,U)) \in U$ for all $(S,U) \in \tau(X)^{<\text{ow}(X)} \times \tau(X)$ (where $A^{<\alpha}$ is the set of all well ordered sequences of elements of A with order type less than α , including the null sequence). A uniform strategy is winning if whenever $\alpha < \text{ow}(X)$ and $((U_\beta, x_\beta): \beta < \alpha)$ is a play for $G^D_\alpha(X)$ with $x_\beta = s(((U_\gamma: \gamma < \beta), U_\beta))$ then $\{x_\beta: \beta < \alpha\}$ is not dense (thus for each $\alpha < \text{ow}(X)$, $s|\tau(X)^{<\alpha} \times \tau(X)$ is a winning strategy for Player II in $G^D_\alpha(X)$). If Player II has a winning uniform strategy for $G^D(X)$, we will write $II \to_\Gamma G^D(X)$.

It should be noted that if $\alpha<\text{ow}(X)\,,$ it does not follow that II † $G^D_\alpha(X)\,;$ $G^D_\alpha(X)$ may be neutral.

Since Player II can elect to "forget" parts of the history of a game, II $\uparrow_S G^D_\alpha(X) \Rightarrow II \uparrow_M G^D_\alpha(X) \Rightarrow II \uparrow G^D_\alpha(X)$. In Section 2, we will show that the converses of these implications need not hold, and show that in some

circumstances, the existence of a uniform strategy is equivalent to the existence of a stationary strategy.

In Section 3, CH will be used to construct a space X for which II \uparrow $G_{\alpha}^{D}(X)$ for every $\alpha < ow(X) = \pi(X) = \omega_{1}$, but for which II $\digamma_{M}^{D}(X)$ for every countable α .

If A is a set and α is an ordinal, |A| will denote the cardinality of A, $[A]^{\leq \alpha}$ (resp. $[A]^{<\alpha}$, $[A]^{\alpha}$) will denote the collection of all subsets of A of cardinality at most $|\alpha|$ (resp. less than $|\alpha|$, equal to $|\alpha|$), and H(A) will denote the set of finite partial functions from A to 2, i.e., if h \in H(A), then h maps a finite subset of A into $\{0,1\}$.

2. Relations Among Strategies

Theorem 2.1. II $\uparrow_S G_\alpha^D(X)$ if and only if there is a dense set $D \subset X$ such that for every $S \in [D]^{\leq \alpha}$, S is not dense.

Proof. Suppose t: $\tau(X) \to X$ is a winning stationary strategy for $G^D_{\alpha}(X)$. Let D be the image of t. Since $t(U) \in U$ for every $U \in \tau(X)$, D is dense. Suppose $S = \{x_{\beta} \colon \beta < \alpha\}$ is a subset of D with $|S| \le |\alpha|$. For each $\beta < \alpha$, choose $U_{\beta} \in \tau(X)$ such that $t(U_{\beta}) = x_{\beta}$. Then $((U_{\beta}, x_{\beta}) \colon \beta < \alpha)$ is a play of the game with Player II following t; since t is a winning strategy, S is not dense.

Conversely, suppose D is a dense subset of X such that no element of $[D]^{\leq \alpha}$ is dense. Choose t: $\tau(X) \to X$ such that $t(U) \in U \cap D$ for each $U \in \tau(X)$. On any play of $G^D_{\alpha}(X)$ where Player II follows t, Player II will play an element of $[D]^{\leq \alpha}$. Thus t is a winning stationary strategy.

Note: It is not assumed t is one-to-one, nor that Player II must play a "new" point on each round.

Corollary 2.2. If $|\alpha|=|\beta|$, then II $\uparrow_S G_\alpha^D(X)$ if and only if II $\uparrow_S G_\beta^D(X)$.

Example 2.3. A space with a stationary strategy. Let $X=2^{\omega 1}$. Let $D=\Sigma(2^{\omega 1})=\{f\in X\colon \exists \alpha<\omega_1\text{ s.t.} f(\beta)=0\text{ for all }\beta>\alpha\}$. D is dense in X and every countable subset of D is nowhere dense, so Theorem 2.1 shows that II $\uparrow_S G_\omega^D(X)$. In fact, II $\uparrow_U G^D(X)$ since if Player II always plays an element of D and follows the rules for $G_\alpha^D(X)$, $\alpha<\omega_1$, Player II can't lose (see Theorem 2.4 below; also see [B-J], Example 2.6).

Theorem 2.4. If ow(X) is a successor cardinal κ^+ , then II $\uparrow_S G^D_\kappa(X)$ if and only if II $\uparrow_{II} G^D(X)$.

Proof. Suppose t: $\tau(X) \to X$ is a winning stationary strategy for $G_K^D(X)$. Let t': $\tau(X)^{<ow(X)} \times \tau(X) \to X$ be defined by t'(((U $_\beta$: $\beta < \alpha$),U)) = t(U). Then t' is a winning uniform strategy.

Suppose, conversely, we have a winning uniform strategy $t'\colon \tau(X)^{<ow(X)}\times \tau(X)\to X \text{ for Player II.} \text{ We can think of } t'\text{ as a strategy for Player II in } G^D_{ow(X)}(X), \text{ although it is not a winning strategy for that game. Since I } T G^D_{ow(X)}(X), \text{ there is a winning strategy s: } X^{<ow(X)}\to \tau(X) \text{ for Player I.}$ Imagine the play $((U_\beta,x_\beta)\colon \beta<\text{ow}(X))$ of $G^D_{ow(X)}(X)$ where Player I follows s and Player II follows t'. Let $D=\{x_\beta\colon \beta<\text{ow}(X)\}. \text{ Since s is a winning strategy for Player I, D is dense in X. Suppose S } \in [D]^{<\kappa}. \text{ Then there}$

is $\alpha < \text{ow}(X) = \kappa^+$ such that $S \subset \{x_\beta \colon \beta < \alpha\}$. Since t'is a winning uniform strategy for Player II, $\{x_\beta \colon \beta < \alpha\}$ and, therefore, S are not dense. Theorem 2.1, then, shows II $\uparrow_S G_\kappa^D(X)$.

Theorem 2.5. If II $\uparrow_M G^D_\alpha(X)$ and $|\beta| = |\alpha|$ then II $\uparrow_M G^D_\beta(X)$.

Proof. Let $f: \beta \to \alpha$ be a bijection. Let $s: \tau(X) \times \alpha \to X$ be a winning Markov strategy for Player II in $G_{\alpha}^D(X)$. Define $s': \tau(X) \times \beta \to X$ by $s'((U,\gamma)) = s((U,f(\gamma)))$. Suppose $((U_{\gamma},x_{\gamma}): \gamma < \beta)$ is a play for $G_{\beta}^D(X)$ with $x_{\gamma} = s'((U_{\gamma},\gamma))$ for each $\gamma < \beta$. Then $((U_{f^+(\delta)},x_{f^+(\delta)}): \delta < \alpha)$ is a play for $G_{\alpha}^D(X)$ and $x_{f^+(\delta)} = s'((U_{f^+(\delta)},f^+(\delta)) = s((U_{f^+(\delta)},\delta))$. Thus since s is a winning Markov strategy, $\{x_{f^+(\delta)}: \delta < \alpha\} = \{x_{\gamma}: \gamma < \beta\}$ is not dense, showing s' is a winning Markov strategy in $G_{\beta}^D(X)$.

Theorem 2.6. II $\uparrow_M G_\alpha^D(X)$ if and only if there is a collection $\{D_\beta\colon \beta<\alpha\}$ of dense subsets of X such that if $\{x_\beta\colon \beta<\alpha\}$ is a set with $x_\beta\in D_\beta$ for all $\beta<\alpha$, then $\{x_\beta\colon \beta<\alpha\}$ is not dense in X.

Sketch of proof. If s: $\tau(X) \times \alpha \to X$ is a winning Markov strategy, let $D_{\beta} = s(\tau(X) \times \{\beta\})$. Conversely, given the collection $\{D_{\beta} \colon \beta < \alpha\}$, define s: $\tau(X) \times \alpha \to X$ such that $s((U,\beta)) \in U \cap D_{\beta}$.

Example 2.7. A space with a Markov strategy, but no stationary or uniform strategy.

Let X be the countable dense subset of $2^{\hbox{\scriptsize R}}$ constructed in [E, Theorem 2.3.7]. A point of X is specified by a

finite collection of disjoint intervals with rational endpoints; the point is the function which is 0 on the union of the intervals and 1 off the union. For $x \in X$, define m(x) to be the measure of $\{ \textbf{\textit{x}} \in R : x(r) = 0 \}$. Define $s: \tau(X) \times \omega \to X$ as follows: if $(U,i) \in \tau(X) \times \omega$, choose $x \in U$ such that $m(x) \leq 2^{-i}$ and let s(U,i) = x. Suppose $((U_i,x_i): i \in \omega)$ is a play for $G^D_\omega(X)$ with $w_i = s(U_i,i)$. Then $\Sigma_{i\in\omega}m(x_i) \leq 2$, thus there is $r \in R$ such that $x_i(r) = 1$ for all i. Therefore $\{x_i: i \in \omega\}$ is not dense, showing that s is a winning Markov strategy in $G^D_\omega(X)$. Since II $\uparrow_M G^D_\omega(X)$, Theorem 2.5 shows that II $\uparrow_M G^D_\alpha(X)$ for all $\alpha < \omega_1$. By (B-J, Cor. 2.3a), $I + G^D_\omega(X)$ since X is countable, and so $(x) = \omega_1$ (note that $\pi(X) = c$, by the way). Suppose $D \subset X$ is dense. D itself is countable, so Theorem 2.1 shows II $f_X G^D_\omega(X)$ and thus Theorem 2.4 shows II $f_X G^D(X)$.

Example 2.8. A space with a uniform strategy but no Markov or stationary strategy.

Consider the HFD X constructed in [B-J, Theorem 3.1] under CH for which II \uparrow $G^D_{\omega}(X)$. By [B-J, Theorem 2.7], I \uparrow $G^D_{\omega \cdot \omega}(X)$. Therefore Theorem 2.5 shows II \not $G^D_{\omega}(X)$, and thus II \not $G^D_{\omega}(X)$. The strategy given in [B-J] for $G^D_{\omega}(X)$ had the stronger property that any set Player II played following the strategy in $G^D_{\omega}(X)$ was nowhere dense (discrete, even!). Since the finite union of nowhere dense sets is nowehre dense, Player II can repeat this strategy on rounds $\{\omega \cdot n + i : i \in \omega\}$ for fixed $n \in \omega$. Thus $ow(X) = \omega \cdot \omega$ and II $\uparrow_U G^D(X)$. Thus the hypothesis on ow(X) in Theorem 2.4 cannot be eliminated.

3. A Space With No Winning Markov or Uniform Strategies

Example 3.1 (CH) A space X with ow(X) = π (X) = ω_1 such that II \uparrow G_{α}^D (X) for every α < ω_1 , but II \uparrow_M G_{ω}^D (X).

We will construct $X\subset 2^{\omega 1}$ in a manner similar to the construction in [B-J, Section 3]. The new idea in this paper is that we will define a collection of infinite subsets to be called anti-strategic sets, each of which will be made dense in a tail. Note, though, that X cannot be an HFD since I $\uparrow G^D_{\omega \cdot \omega}(X)$ ([B-J, Theorem 2.7]).

As in the standard inductive construction of an HFD, at stage $\alpha < \omega_1$ we will define functions $f_{\beta\alpha}\colon \alpha+1 \to 2$ for each $\beta < \omega_1$ that extend those defined at earlier stages. X will then be $\{f_\beta = \bigcup \{f_{\beta\alpha}\colon \alpha < \omega_1\}\colon \beta < \omega_1\}$ (actually, for notational convenience, we will define X to be homeomorphic to this). To do this, we will have, at stage α , a countable collection $Z(\alpha)$ of countably infinite subsets of ω_1 . We find a set $B(\alpha) \subset \omega_1$ such that for each $A \in Z(\alpha)$, both $A \cap B(\alpha)$ and $A - B(\alpha)$ are infinite. We will say $B(\alpha)$ splits $Z(\alpha)$.

We will pre-define some values of the f_{β} 's by defining functions $\{p_{\beta}\colon \beta<\omega_1\}$ with $dom(p_{\beta})\subset\omega_1$ and range $(p_{\beta})\subset 2$; we will assure that $p_{\beta}\subset f_{\beta}$ for each $\beta<\omega_1$.

To begin, let $S = [\omega_1]^{<\omega}$. Let $\{C_S \colon S \in S\}$ be a partition of ω_1 into uncountable, pairwise disjoint subsets such that if $\alpha \in C_S$ then $\alpha > \sup(S)$ (let $0 \in C_{\emptyset}$). Further, let i: $C_{\emptyset} + \omega_1$ be a function such that $i^+(\alpha)$ is uncountable for each $\alpha < \omega_1$. For $S \subset \omega_1$, let ot(S) be the order type of S. Let $\pi \colon \omega_1 \to S$ be defined by $\pi(\alpha) = S$ if $\alpha \in C_S$.

We say a subset $S \subset \omega_1$ has the *strategy property* if for every $\alpha \in S$, $\pi(\alpha) = \alpha \cap S$. Note that initial segments of S also will have the strategy property. We say $S \in S$ is a *strategic set* if S is infinite, S has the strategy property and $i(\min(S)) = \operatorname{ot}(S)$ (note that since S has the strategy property, $\min(S) \in C_{g}$). A set $S \in S$ is called *anti-strategic* if $|S| = \omega$ and $S \cap S'$ is finite for every strategic set S'.

Index the anti-strategic sets as $\{A_\alpha\colon \alpha\in I\}$ for some index set $I\subset \omega_1$ such that $A_\alpha\subset \alpha$ for each $\alpha\in I$. Index the strategic sets as $\{S_\lambda\colon \lambda\in L\}$ for some set of limit ordinals $L\subset \omega_1$, with $S_\lambda\subset \lambda$ for each $\lambda\in L$. For each $\lambda\in L$ and $\beta\in S_\lambda$ define a function $h_\beta^\lambda\in 2^{\lambda+\omega-\lambda}$ as follows: reindex S_λ as $\{\beta_i\colon i\in \omega\}$. Then let $h_{\beta_i}^\lambda(\lambda+j)=\begin{cases} 0 \text{ if } j=i\\ 1 \text{ if } j\neq i \end{cases}$.

For each $\beta < \omega_1$ choose a function $g_\beta \in 2^\beta$ such that for each $h \in H(\omega_1)$ and $S \in \mathcal{S}$, there is $\beta \in C_S$ such that $h \subset g_\beta$ and also for each $h \in H(\omega_1)$ and each $\alpha < \omega_1$ there is $\beta \in C_\beta$ such that $h \subset g_\beta$ and $i(\beta) = \alpha$. Note that if $\beta \in S_\lambda \cap S_\lambda$, then $dom(h_\beta^\lambda) \cap dom(g_\beta) = \emptyset$ and $dom(h_\beta^\lambda) \cap dom(h_\beta^\lambda) = \emptyset$.

We can now define p_{β} for β < ω_1 :

$$p_{\beta} = v\{h_{\beta}^{\lambda}: \beta \in S_{\lambda}\} \cup g_{\beta}$$

This will guarantee that in the space X we construct, $\{f_{\beta}\colon \beta\in C_S\} \text{ is dense for each } S\in \mathcal{S} \text{ and } \{f_{\beta}\colon \beta\in C_{\beta} \text{ and } | i(\beta)=\alpha\} \text{ is dense for each } \alpha<\omega_1. \text{ Also, it will guarantee that if S is a strategic set, } \{f_{\beta}\colon \beta\in S\} \text{ is discrete and hence nowhere dense.}$

At long last, we are ready for the induction! Suppose we are at stage α . We need to define functions $\{f_{\beta\alpha}\colon \beta<\omega_1\}$

and a countable collection $Z(\alpha)$ of anti-strategic sets such that if $A \in Z(\alpha)$ then $A \subset \alpha$, and we assume we have done this for all $\gamma < \alpha$. First define:

$$\mathbf{Z}_{1}(\alpha) \ = \ \begin{cases} \mathbf{U}\{\,\mathbf{Z}\,(\gamma):\,\gamma\,<\,\alpha\} & \text{if }\alpha\not\in\mathbf{I} \\ \\ \mathbf{U}\{\,\mathbf{Z}\,(\gamma):\,\gamma\,<\,\alpha\} & \mathbf{U}\,\{\,\mathbf{A}_{\alpha}^{}\} & \text{if }\alpha\,\in\,\mathbf{I} \end{cases}$$

If $\alpha \neq \lambda + i$ for any $\lambda \in L$ and $i < \omega$, let $Z_2(\alpha) = Z_1(\alpha)$. If $\alpha = \lambda + i$ for some $\lambda \in L$ and $i < \omega$, let

$$Z_2(\alpha) = \{A - S_\lambda : A \in Z_1(\alpha)\}.$$

Note that the definition of anti-strategic set guarantees that elements of $Z_2(\alpha)$ are infinite (and anti-strategic). Also, if $\beta \in A \in Z_2(\alpha)$, then $\alpha \not\in dom(p_g)$.

Let $B(\alpha) \subset \omega_1$ be a set that splits $Z_2(\alpha)$, i.e. for each $A \in Z_2(\alpha)$, $A - B(\alpha)$ and $A \cap B(\alpha)$ are both infinite.

For all β < ω_1 , define $f_{\beta\alpha}$: α + 1 + 2 to extend $p_{\beta} \mid (\alpha$ + 1) and $f_{\beta\gamma}$ for all γ < α such that if β \in A \in $Z_2(\alpha)$ then

$$f_{\beta\alpha}(\alpha) = \begin{cases} 1 & \text{if } \beta \in B(\alpha) \\ 0 & \text{if } \beta \notin B(\alpha) \end{cases}$$

Finally, let

 $Z(\alpha) = Z_1(\alpha) \cup \{A \cap B(\alpha): A \in Z_2(\alpha)\} \cup \{A - B(\alpha): A \in Z_2(\alpha)\}.$ This completes stage α of the induction.

Let $f_{\beta} = U\{f_{\beta\alpha} : \alpha < \omega_1\}$ for each $\beta < \omega_1$. It will be convenient to identify f_{β} with its index β . More formally, we can define a topology τ on ω_1 such that the function $f\colon \omega_1 + \{f_{\beta} \colon \beta < \omega_1\} \subset 2^{\omega_1}$ which takes β to f_{β} is a homeomorphism; we then let $X = (\omega_1, \tau)$.

To see that II \uparrow $G_{\alpha}^{D}(X)$ for $\alpha<\omega_{1}$, recall that since f_{β} extends g_{β} for each $\beta<\omega_{1}$, C_{S} is dense in X for each

S \in S and i (α) \subset C is dense for each α < ω_1 . Therefore, given α < ω_1 , we can define a function $s_\alpha\colon [X]^{<\alpha}\times \tau(X)\to X$ such that $s_\alpha(((S,U)))\in U\cap C_S$ for all $(S,U)\in [X]^{<\alpha}\times \tau(X)$ and $i(s_\alpha(\emptyset,U))=\alpha$ for all $U\in \tau(X)$. If $\{(U_\beta,\gamma_\beta)\colon \beta<\alpha\}$ is a play in $G_\alpha^D(X)$ with $\gamma_\beta=s((\{\gamma_\delta\colon \delta<\beta\},U_\beta))$, then $\{\gamma_\beta\colon \beta<\alpha\}$ is a strategic set, thus not dense in X. Therefore, s_α is a winning strategy for Player II.

To show II \mathcal{T}_{M} $G^{D}_{\omega}(X)$ we will need a lemma, which will be proved later.

Lemma 3.2. If O is a non-empty open subset of X and $\{D_{\underline{i}}\colon i<\omega\} \text{ is a countable collection of dense subsets of } \\ \text{O, then there is an infinite subset } J\subset\omega \text{ and an antistrategic set } \{\beta_{\underline{i}}\colon i\in J\} \text{ such that } \beta_{\underline{i}}\in D_{\underline{i}} \text{ for each } i\in J.$

We will use this lemma in conjunction with Theorem 2.6. Suppose we have a countable collection of dense subsets of X which we can index as $\{D_j, k, i : j, k, i < \omega\}$. We can construct a dense set $\{\beta_j, k, i : j, k, i < \omega\}$ with $\beta_j, k, i \in D_j, k, i$ for all $j, k, i < \omega$ as follows. If $h \in H(\omega_1)$, let $(h) = \{\beta \in X : f_{\beta} \text{ extends } h\}$. Thus $\{(h): h \in H(\omega_1)\}$ is a basis for X. We will define a sequence of countable ordinals $(\alpha_j: j \in \omega)$ and the points $\{\beta_j, k, i : j, k, i < \omega\}$ by induction on j. First, let $\alpha_0 = \omega$. Continuing inductively, suppose we have defined α_j . Index $H(\alpha_j)$ as $\{h_j, k : k < \omega\}$. For each $k < \omega$, apply Lemma 3.2 to $\{D_j, k, i \cap (h_j, k) : i < \omega\}$. We get a set $J_j, k \subset \omega$ and an anti-strategic set $\{\beta_j, k, i : i \in J_j, k\}$ with $\beta_j, k, i \in D_j, k, i \cap (h_j, k)$. For $i \notin J_j, k$, choose $\beta_j, k, i \in D_j, k, i$. When we constructed X, we indexed the anti-strategic sets,

so $\{\beta_{j,k,i}: i \in J_{j,k}\} = A_{\alpha(j,k)}$ for some $\alpha(j,k) < \omega_1$. The construction of X guaranteed that if $h \in H(\omega_1 - \alpha(j,k))$ then $A_{\alpha(j,k)} \cap (h) \neq \emptyset$. Let $\alpha_{j+1} = \sup(\{\alpha(j,k): k < \omega\})$. Note that if $h \in H(\alpha_j \cup (\omega_1 - \alpha_{j+1}))$ then $\{\beta_{j,k,i}: k,i < \omega\} \cap (h) \neq \emptyset$.

Let $\alpha = \sup(\{\alpha_j\colon j<\omega\})$. Suppose $h\in H(\omega_1)$. Then $h=h_1\cup h_2$, where $h_1\in H(\alpha)$ and $h_2\in H(\omega_1-\alpha)$. There is $j<\omega$ such that $h_1\in H(\alpha_j)$. Then $h_2\in H(\omega_1-\alpha_{j+1})$ so $h\in H(\alpha_j\cup (\omega_1-\alpha_{j+1}))$. Thus there is $\beta_j,k,i\in \langle h\rangle$ for some $k,i<\omega$. This shows that $\{\beta_j,k,i\colon j,k,i<\omega\}$ is dense. Theorem 2.6, then, tells us II f_M $G^D_\omega(X)$.

Before we can prove Lemma 3.2, we need to further examine the strategic sets. We call a set $S \in \mathcal{S}$ prestrategic if there is a strategic set S' such that $S \subset S'$. Note that pre-strategic sets are nowhere dense in X. We call an infinite set $S \in \mathcal{S}$ an initial strategic segment if S has the strategy property and ot(S) \leq i(min(S)). If S is an initial strategic segment, then S can be extended to a strategic set. For $S \subset \omega_1$ let $\Pi(S) = \cup_{\alpha \in S} (\pi(\alpha) \cup \{\alpha\})$. Then, if S is an initial strategic segment, $\Pi(S) = S$, and, for infinite S, S is pre-strategic if and only if $\Pi(S)$ is an initial strategic segment.

Lemma 3.3. Suppose $\{S_{\alpha}: \alpha \in J\}$ is a chain of prestrategic sets. Then $U\{S_{\alpha}: \alpha \in J\}$ is pre-strategic.

Proof. Let $S = \Pi(U\{S_{\alpha}: \alpha \in J\})$. Suppose $\beta \in S$. Then for some $\alpha \in J$ and $\beta' \in S_{\alpha}$, $\beta \in \pi(\beta') \cup \{\beta'\}$. There is a strategic set S' containing S_{α} . Since $\beta' \in S'$, $S' \cap \beta' = \pi(\beta')$. Thus $\beta \in S'$, so $S' \cap \beta = \pi(\beta)$. Since $\beta < \beta'$,

S' $\cap \beta \subset S' \cap \beta'$, thus $\pi(\beta) \subset \pi(\beta') \subset S$. Now suppose further that γ \in S \cap β . There is α' \in J and β'' \in S_{α} , such that $\gamma \in \pi(\beta'') \cup \{\beta''\}$. But then for some $\delta \in J$, $\{\beta',\beta''\} \subset S_{\delta}$ and there is a strategic set S" containing \mathbf{S}_{δ} . Since $\gamma \in \pi(\beta") \cup \{\beta"\}$ and S" is strategic, $\gamma \in S"$. Likewise, since $\beta \in \pi(\beta') \cup \{\beta'\}$, $\beta \in S''$. Thus $\gamma \in S'' \cap \beta$ so $\gamma \in \pi(\beta)$. Thus $S \cap \beta = \pi(\beta)$, i.e. S has the strategy property. Suppose ot(S) > i(min(S)). Let β be the element of S such that $ot(\pi(\beta)) = i(min(S))$. For some $\alpha \in J$, $\beta \in \Pi(S_{\alpha})$, so for some strategic S', $\beta \in S' \supset S_{\alpha}$. But then, since S' $\beta = S \cap \beta = \pi(\beta)$, $\min(S') = \min(S)$. $\pi(\beta) \cup \{\beta\} \subset S'$ and ot($\pi(\beta) \cup {\beta}$) = ot($\pi(\beta)$) + 1 = i(min(S)) + 1 > i(min(S')), contradicting the fact that S' is strategic. (Note: This is the only place where the condition on the order type of strategic sets matters!) Therefore, ot(S) < i(min(S)), so S is an initial strategic segment. This shows that $U\{S_{\alpha}: \alpha \in J\}$ is pre-strategic.

Proof of Lemma 3.2. Suppose $0 \in \tau(X)$ and $\{D_i \colon i < \omega\}$ is a collection of dense subsets of 0. For each $i < \omega$ we will inductively define $J_i \subset \omega$ with $|J_i| = \omega$ and $J_{i+1} \subset J_i$, pre-strategic sets M_i' and M_i such that $M_i \subset U\{D_j \colon j \in J_i\}$ and $M_i' \subset M_i \cap U\{D_j \colon j \in J_i - J_{i+1}\}$ and a strategic set $S_i \supset M_i$. Let $J_0 = \omega$. Suppose we have defined J_i for $i \leq k$ and M_i , M_i' and S_i for i < k. Since each S_i is strategic and thus nowhere dense, $D_j - U\{S_i \colon i < k\}$ is dense in 0 (thus non-empty!) for each j. Lemma 3.3 and Zorn's Lemma let us choose a maximal pre-strategic set $M_k \subset U\{D_j - U\{S_i \colon i < k\} \colon j \in J_k\}$. Let S_k be a strategic set containing

For each $i < \omega$, let $m_i = \min(M_i^!)$. If $\{m_i : i < \omega\}$ is anti-strategic, then for each i we can choose $j(i) < \omega$ such that $m_i \in D_{j(i)}$ and $j(i) \in J_i - J_{i+1}$. Then $\{m_i : i < \omega\}$ and $J = \{j(i) : i < \omega\}$ satisfy the conclusion of Lemma 3.2.

So suppose there is a strategic set S such that $|S \cap \{m_i \colon i < \omega\}| = \omega. \quad \text{Choose a subset } \{m_{i(j)} \colon j < \omega\} \subset S \cap \{m_i \colon i < \omega\} \text{ such that if } j < k \text{ then } i(j) < i(k) \text{ and } (\text{the ordinal!}) \ m_{i(j)} < m_{i(k)}. \quad \text{Since S has the strategy property, } (*) \ m_{i(j)} \in \pi(m_{i(k)}) \text{ for } j < k. \quad \text{Suppose } j < \omega.$ If $m_{i(j+1)} < \sup(M_{i(j)})$, let $q_j = \min(\{q \in M_{i(j)}\}: q > m_{i(j+1)}\}$. Since $m_{i(j+1)} \notin S_{i(j)}$ but $q_j \in S_{i(j)}$ and $S_{i(j)}$ has the strategy property, $m_{i(j+1)} \notin \pi(q_j)$. If, on the other hand, $m_{i(j+1)} \geq \sup(M_{i(j)})$, it cannot be the case that $M_{i(j)} \subset \pi(m_{i(j+1)})$ for if that were the case then $M_{i(j)} \cup \{m_{i(j+1)}\} \subset S_{i(j+1)}$. But $M_{i(j)} \subset \pi(M_{i(j)})$ since $M_{i(j)}$ is cofinal in the pre-strategic set $M_{i(j)}$. This would imply that $M_{i(j)} \cup \{m_{i(j+1)}\} \subset S_{i(j+1)}$, contradicting the maximality of $M_{i(j)}$. So there must be $q_j \in M_{i(j)}$ - $\pi(m_{i(j+1)})$. Either way, we have found $q_j \in M_{i(j)}$ such that

 $\{q_{j}, m_{i}(j+1)\} \text{ is not pre-strategic. Pick } k(j) \in J_{i(j)} - J_{i(j)+1} \text{ such that } q_{j} \in D_{k(j)}. \text{ If } S' \text{ is a strategic set,} \\ \text{then } S' \text{ contains at most one element of } \{q_{j}: j < \omega\}, \text{ for suppose, on the contrary, } \{q_{j}, q_{j}, \} \in S', \text{ with } j < j'. \\ \text{Since } \{m_{i(j')}, q_{j'}\} \in S_{i(j')} \text{ and } m_{i(j')} \leq q_{j'}, m_{i(j')} \in \\ \pi(q_{j'}) \cup \{q_{j'}\}, \text{ thus } m_{i(j')} \in S'. \text{ But since } j+1 \leq j', \\ (*) \text{ implies that } m_{i(j+1)} \in \pi(m_{i(j')}) \cup \{m_{i(j')}\}. \text{ Thus } \\ m_{i(j+1)} \in S', \text{ which contradicts the choice of } q_{j}. \text{ Therefore } \{q_{j}: j < \omega\} \text{ is anti-strategic, and } \{q_{j}: j < \omega\} \text{ and } \\ J = \{k(j): j < \omega\} \text{ satisfy the conclusion of Lemma 3.2.}$

Remark 3.4. We noted in the proof of Lemma 3.3 the only place where the condition on the order types of strategic sets plays a crucial role. Since we are aiming for a space without winning Markov strategies, we know from Theorem 2.4 that we must ensure that II f_U $G^D(X)$. Eric van Douwen pointed out that the condition on order types of strategic sets is the only reason why α must be mentioned in a strategy for $G^D_{\alpha}(X)$. Indeed, there are dense subsets D of X with the strategy property, but not all initial segments of D are pre-strategic! While the condition on order types was not necessary for the inductive construction of X, had it been omitted, Player II would have had a uniform strategy for the resulting space.

4. Open Problems

- (a) Is there a neutral game in ZFC?
- (b) Can CH be eliminated from Example 3.1?
- (c) Is there a space X such that $\omega \cdot \omega < ow(X) < \omega_1$?

References

[B-J] A. J. Berner and I. Juhász, *Point-picking games and*HFD's, Models and Sets, Lecture Notes in Mathematics
1103, Springer-Verlag, 1984, 53-66.

- [E] R. Engelking, Outline of general topology, North Holland Publishing Company, 1968.
- [G-T] F. Galvin and R. Telgarsky, Stationary strategies in topological games, 1983 (preprint).
- [H-J] A. Hajnal and I. Juhász, On hereditarily α -Lindelöf and α -separable spaces II, Fund. Math. 81 (1974), 147-158.

University of Dallas
Irving, Texas 75061

Current Address:
HyperGraphics Corp.
308 N. Carroll
Denton, Texas 76201