A FACTORIZATION OF THE
COLLINS-ROSCOE THEOREM

by

H. R. BENNETT
A FACTORIZATION OF THE
COLLINS-ROSCOE THEOREM

H. R. Bennett

In [CR] Collins and Roscoe proved the following metrization theorem:

Theorem 1. [CR] In order that a T_1-space be metrizable it is necessary and sufficient that, for each $x \in X$, there is a countable decreasing local neighborhood basis $\{W(i,x)\mid i \in \mathbb{N}\}$ (where \mathbb{N} denotes the set of natural numbers) satisfying

(i) if $x \in U$ and U is an open set, then there exists a natural number $n = n(x,U)$ and an open set $V = V(x,U)$ containing x such that $x \in W(n,y) \subseteq U$ whenever $y \in V$.

In this note the Collins-Roscoe theorem is factored so one can topologically see why the result holds.

Definition 1. A countable local neighborhood basis for a space X is a collection $\mathcal{W} = \{W(i,x)\mid i \in \mathbb{N}, x \in X\}$ of not necessarily open sets such that

(i) For each $i \in \mathbb{N}$ and $x \in X$, $x \in W(i,x)_0$, and

(ii) If x is in an open set U, then there exists $n = n(x,U) \in \mathbb{N}$ such that $W(n,x) \subseteq U$.

Definition 2. A space X is quasi-developable [Be] if there is a sequence $\mathcal{G} = \{G_1, G_2, \cdots\}$ of collections of open sets such that if x is in an open set $U \subseteq X$, then there exists $n(x,U) = n \in \mathbb{N}$ such that $\text{st}(x,G_n) \subseteq U$. The sequence \mathcal{G} is a quasi-development for X.
All undefined terms and concepts are as in [E]. All spaces are T_1-spaces.

Consider the following conditions on a countable local neighborhood bases $W = \{ W(i,x) | i \in \mathbb{N}, x \in X \}$ for a space X:

A(1). Given $W(i,x)^O$ there is an open set $V(i,x)$ containing x and a natural number $b(i,x) > i$ such that if $y \in V(i,x)$, then $x \in W(b(i,x),y)$,

A(2). Given $W(i,x)^O$ there is an open set $V(i,x)$ containing x and a natural number $b(i,x)$ such that if $y \in V(i,x)$, then $x \in W(b(i,x),y) \subseteq W(i,x)^O$,

A(3). For each $x \in X$ and $i \in \mathbb{N}$, $W(i+1,x) \subseteq W(i,x)$.

The Michael Line $[M]$ satisfies A(1) and A(2) but not A(3). Heath's plane $[H]$ satisfies A(1) and A(3) but not A(2).

It is clear that if the hypothesis of the Collins-Roscoe Theorem is assumed on a countable local neighborhood base then A(2) and A(3) are satisfied. To see that A(1) is satisfied let $W(i,x)^O$ be given. Choose $j(i)$ to be the first natural number such that $W(j(i),x)^O$ is properly contained in $W(i,x)^O$. Let $V(i,x) = V(x,W(j(i),x)^O)$ and $b(i,x) = n(x,W(j(i),x)^O)$. If $x \in V(i,x)$, then it follows that $x \in W(b(i,x),x)^O \subseteq W(b(i,x),x) \subseteq W(j(i),x)^O$. Thus $W(b(i,x),x) \subseteq W(i,x)^O \subseteq W(i,x)$. Since the local neighborhood base is decreasing it must follow that $b(i,x) > i$.

Theorem 2. Let X be a T_1-space with a countable local neighborhood basis W. Then

(i) If W satisfies A(1) and A(3), then closed subsets of X are G_δ-sets,
(ii) If \(\mathcal{W} \) satisfies \(A(2) \), then \(X \) is a quasi-developable space, and

(iii) If \(\mathcal{W} \) satisfies \(A(2) \) and \(A(3) \) \(X \) is a collection-wise normal space.

Proof. (i) This follows immediately from Theorem 11 of [CR].

(ii) Let \(\mathcal{W} \) be a local neighborhood basis for \(X \) that satisfies \(A(2) \). Let \(G_0 = \{\{x\}|\{x\} \text{ is open in } X\} \). Arbitrarily fix \(i \in \mathbb{N} \). For each \(x \in X \), \(W(i,x)^0 \) induces an open set \(V_1(i,x) \) containing \(x \) and a natural number \(b_1(i,x) \) such that if \(y \in V_1(i,x) \) then \(x \in W(b_1(i,x),y) \subseteq W(i,x)^0 \). Notice that \(V_1(i,x) \subseteq W(i,x)^0 \). Choose \(m(i,x) \in \mathbb{N} \) such that \(W(m(i,x),x) \subseteq V_1(i,x) \cap W(b_1(i,x),x)^0 \).

Then \(W(m(i,x),x)^0 \) induces an open set \(V_2(i,x) \) containing \(x \) and a natural number \(b_2(i,x) \) such that if \(y \in V_2(i,x) \) then \(x \in W(b_2(i,x),y) \subseteq W(m(i,x),x)^0 \).

Let \(G(i,j,k,\ell) = \{V_2(i,x)|b_1(i,x) = j, m(i,x) = k, b_2(i,x) = \ell\} \), and let \(\mathcal{G} = \{G_0\} \cup \{G(i,j,k,\ell)|i,j,k,\ell \in \mathbb{N}^4\} \).

It follows that \(\mathcal{G} \) is a quasi-development for \(X \) since if \(\{x\} \) is open in \(X \) then \(st(x,G_0) \subseteq U \) where \(U \) is any open set containing \(x \). If \(\{x\} \) is not open in \(X \) and \(x \in U \) where \(U \) is open in \(X \) then choose \(i \in \mathbb{N} \) such that \(W(i,x) \subseteq U \).

Let

\[V_2(i,z) \in G(i,b_1(i,x), m(i,x), b_2(i,x)) \]

such that \(x \in V_2(i,z) \). Thus \(z \in W(b_2(i,z),x) \) and since \(b_2(i,z) = b_2(i,x) \), it follows that

\[x \in W(b_2(i,x),x) \subseteq W(m(i,x),x)^0 \subseteq V_1(i,x) \].

Hence \(x \in W(b_1(i,x),z) \subseteq W(i,x)^0 \subseteq U \). Since
it follows that
\[\text{st}(x, G(i, b_1(i, x), m(i, x), b_2(i, x)) \subseteq U \]
and \(X \) is a quasi-developable space.

(iii) This is noted in the remark following Theorem 11 of [CR] and specifically proved in Theorem 3 of [CRRR].

Clearly imposing conditions \(A(1), A(2) \) and \(A(3) \) and a local neighborhood bases \(W \) for a \(T_1 \)-space \(X \) is equivalent to the conditions in the Collins-Roscoe theorem. This represents the factorization of the Collins-Roscoe theorem.

Proof of Theorem 1. Since \(X \) has a countable local neighborhood basis satisfying \(A(1), A(2) \) and \(A(3) \) it is a quasi-developable space having closed sets \(G_\delta \)-sets and, thus, is developable [Be]. It is also a collection-wise normal \(T_1 \)-space and, hence, metrizable [Bi].

This factorization clearly shows the importance of the countable local neighborhood base being decreasing in the Collins-Roscoe Theorem. It also shows that a countable local neighborhood base that satisfies all the conditions of the Collins-Roscoe Theorem except being decreasing also implies a good deal of structure, i.e., quasi-developability, on the space.

References

Texas Tech University
Lubbock, Texas 79409