TOPOLOGY PROCEEDINGS Volume 10, 1985 Pages 7–10

http://topology.auburn.edu/tp/

EXTENSIONS OF COMPACT GROUP ACTIONS

by

BEVERLY L. BRECHNER

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOONT	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

EXTENSIONS OF COMPACT GROUP ACTIONS

Beverly L. Brechner

1. Introduction

Compact actions on S^2 were characterized by Kerekjarto in [K], where it is shown that the only regular homeomorphisms or S^2 are the (topological) rotations and reflections. Using this result, we observe (Theorem 2.3) that if H is an orientation preserving compact group action on a nondegenerate subcontinuum of S^2 such that H is extendable to a *compact* action G on S^2 , then G and H are iseomorphic. (Note that this result does not necessarily hold when H is not orientation preserving. For example, take H to be the group generated by the reflection through the equator.) While Theorem 2.3 is an easy consequence of [K], it is remarkable in light of our Example 2.4, which explains the necessity of the hypothesis that the extension G be compact. (Or perhaps the theorem is natural, while the example is remarkable.)

Recall that a homeomorphism is *regular* iff its full family of iterates is equicontinuous.

2. Results

2.1 Theorem. Let X be a nondegenerate continuum in S^2 (or B^2), and let K be an orientation preserving, compact group action on S^2 (B^2) such that each element of K is the identity on X. Then K is the identity.

Brechner

Proof. Kerekjarto [K] (see also [E]) has shown that the only orientation preserving, regular homeomorphisms of S^2 are the rotations. (See also [B,2] and [R].) Now every element of a compact group action is regular. Thus, since each non-identity rotation on S^2 has exactly a pair of points as its fixed point set, we see that K must be the identity.

If K acts on B^2 , then it can be extended to an isomorphic action on S^2 (simply reflect the action), and by the above, it must again be the identity.

2.2 Remark. This theorem does not hold for S^3 : Let $S^3 = T_1 \cup T_2$, where each T_1 is a torus, and where T_1 and T_2 are identified by the homeomorphism g along their boundaries, where g identifies meridians on T_1 with longitudes on T_2 . Then let h: $S^3 \rightarrow S^3$ be the period n homeomorphism that naturally extends a period n meridianal rotation on T_1 . Then the fixed point set of h is the center circle, S, of T_1 . Let $K = \{h, h^2, \dots, h^n\}$, and let X = S. Then K is an orientation preserving extension of the identity on X, but K is not the identity.

2.3 Theorem. Let X be a nondegenerate continuum in S^2 (B²), and let H be a compact group action on X. Suppose that H can be extended to an orientation preserving compact group action G on S^2 (B²). Then G and H are iseomorphic.

Proof. Let $f: G \rightarrow H$ be the natural continuous homomorphism; that is, f(g) = g | X. We shall show that f is 1-1. Let $K = f^{-1}(e)$. Then K is a compact subgroup of G. By Theorem 2.1, K must be the identity. It follows that f is 1-1, and therefore an iseomorphism.

2.4 Example. The following example shows that Theorem 2.3 does not hold in general; that is, restricted compact groups may not be iseomorphic to any group extension.

Let X be the outer boundary simple closed curve of the Sierpinski curve $Y \subseteq E^2 \subseteq S^2$, and let H be a circle group of homeomorphisms on X. The proof of the main theorem (3) of [W] shows that each element of H can be extended to a homeomorphism of Y onto itself. Choose such an extension for each h \in H, and let G be the group generated by these extensions. Then

(1) G is totally disconnected (see Theorem 1.2 of R. D. Anderson of [B,1]), but the orbit of a point in X is a simple closed curve.

(2) By (1), G' and H cannot be iseomorphic, for any group extension G' of H.

(3) G can be extended, in a natural way, to a group action \tilde{G} on S^2 , with \tilde{G} is ecomorphic to G, since each complementary domain of X in S^2 is a disk.

(4) G' cannot be compact, for any group extension G'of H. For if it were, by (3) and Theorem 2.3, G would bea circle group. But this contradicts (1).

(5) It follows from (4) and Theorem 2.3, that every compact subgroup of G is finite.

References

- [B,1] B. L. Brechner, On the dimensions of certain spaces of homeomorphisms, Trans. of AMS 121 (1966), 516-548.
- [B,2] ____, Almost periodic homeomorphisms of E² are periodic, Pacific J. Math. 59 (1975), 367-374.
- [E] S. Eilenberg, Sur les transformations periodiques de la surface de sphere, Fund. Math. 22 (1934), 28-41.
- [K] B. v. Kerekjarto, Topologische Characterisierung der linearen Abbildungen, Acta Sci. Math. Szeged. 6 (1934), 235-262.
- [R] G. Ritter, A characterization of almost periodic homeomorphisms on the 2-sphere and the annulus, Gen. Top. & Its Appl. 9 (1978), 185-191.
- [W] G. T. Whyburn, Analytic topology, AMS Colloquium Publication 28, AMS, Providence, RI (1942).

University of Florida

Gainesville, Florida 32611