CONCERNING THE EXTENSION OF CONNECTIVITY FUNCTIONS

by

RICHARD G. GIBSON AND FRED ROUSH
CONCERNING THE EXTENSION OF CONNECTIVITY FUNCTIONS

Richard G. Gibson and Fred Roush

In his classic paper, Stallings [7] asked if a connectivity function $I \to I$ could always be extended to a connectivity function $I^2 \to I$ when I is considered embedded in I^2 as $I \times 0$. Several authors answered this negatively by giving examples of connectivity functions $I \to I$ which are not almost continuous, [1], [6]. In [7] Stallings proved that an almost continuous function $I \to I$ is a connectivity function and, curiously enough, a connectivity function $I^2 \to I$ is an almost continuous function. Later it was shown by Kellum [4] that an almost continuous function $I \to I$ can be extended to an almost continuous function $I^2 \to I$. This naturally leaves the question "can an almost continuous function $I \to I$ be extended to a connectivity function $I^2 \to I"?" Theorem 2 of this paper together with the first example of [2] shows that this is not the case.

For simplicity no distinction will be made between points of $I \times 0$ and I. Also, $B(y,r)$ denotes an open ball about y with radius r where d is the usual distance function.

Definition 1. A function $f: X \to Y$ between spaces X and Y is said to be almost continuous if each open set containing the graph of f also contains the graph of a continuous function with the same domain. The function f is said to be a connectivity function if for each connected subset
C of X the graph of f restricted to C, denoted by \(f|_C \), is a connected subset of \(X \times Y \). The function f is said to be a Darboux function if \(f(C) \) is connected whenever C is a connected subset of X.

Definition 2. A function \(f: I \to I \) has the Cantor Intermediate Value Property (CIVP) if for any Cantor set \(K \) in the interval \((f(x), f(y)) \) the interval \((x, y) \) or \((y, x) \) contains a Cantor set \(C \) such that \(f(C) \subseteq K \) where \(x, y \in I = [0,1] \). The function f has the Weak Cantor Intermediate Value Property (WCIVP) if there exists a Cantor set \(C \) between x and y such that \(f(C) \subseteq (f(x), f(y)) \).

Theorem 1. If \(f: I \to I \) has the CIVP, then f has the WCIVP.

Proof. Obvious.

Example 1. There exists a function \(f: I \to I \) that has the WCIVP but does not have the CIVP. Let \(S_y, y \in I \), be the collection of Cantor dense subsets of I constructed in [2]. Let \(r \in I \) be fixed. Let \(g: I \to \bigcup_{y \neq r} S_y \) where \(y \in I \) be 1-1 and onto. Define \(f(x) = g(y) \) where \(x \in S_r \) and \(y \neq r \). If \(x \in S_r \), let \(f(x) = 0 \). If \(x \) is not in any \(S_y \), let \(f(x) = 0 \).

Let \(a, b \in I \) and assume that \(f(a) < f(b) \). Let \(K \) be a Cantor set in \((f(a), f(b)) \) such that \(K \subseteq S_y \) for some \(y \neq r \). Choose \(z \in K \) such that \(r \neq g^{-1}(z) = w \). Consider \(S_w \). If \(x \in S_w \), then \(f(x) = g(w) = z \) and \(f(S_w) \subseteq K \). By Cantor density there exists a Cantor set \(C \subseteq S_w \) such that \(C \subseteq (a, b) \) or \(C \subseteq (b, a) \). Therefore \(f(C) \subseteq (f(a), f(b)) \) and hence f has the WCIVP.
Let K be a Cantor set in \((f(a),f(b))\) such that \(K \subset S_r\). Since \(K\) contains no points of the range of \(f\), there exists no Cantor set \(C \subset I\) such that \(f(C) \subset K\). Therefore \(f\) does not have the CIVP.

Theorem 2. If \(f: I^2 \to I\) is a connectivity function, then \(f|I \times 0\) has the WCIVP. Moreover, the Cantor set can be selected such that \(f\) restricted to it is continuous.

Proof. It follows that a function \(I^2 \to I\) is a connectivity function if and only if it is peripherally continuous [3]. The function \(f: I^2 \to I\) is peripherally continuous if and only if \(U\) is an open subset of \(I^2\) containing a point \(x\) and \(V\) is an open subset of \(I\) containing \(f(x)\), then there is an open subset \(W\) of \(U\) containing \(x\) such that \(f(\text{bd}(W))\) is a subset of \(V\), where \(\text{bd}(W)\) is the boundary of \(W\).

Assume \(a, b \in I\) such that \(f(a) < f(b)\). Choose \(y \in I\) between \(a\) and \(b\) such that \(f(y) \in (f(a), f(b))\). Let \(\varepsilon = \min\{d(f(a), f(y)), d(f(y), f(b))\}\). Let \(U\) be a connected open subset of \(I^2\) with connected boundary \(C\) such that \(y \in U \subset \overline{U} \subset B(y, \eta/5)\) where \(\eta = \min\{d(y, a), d(y, b)\}\), and \(f(C) \subset B(f(y), \varepsilon/5)\). Then there exists \(y_0, y_1 \in I\) which are in \(C\) such that \(y_0 < y < y_1\).

\[
\begin{align*}
y_0 & \in B(y, \eta/5), & f(y_0) & \in B(f(y), \varepsilon/5), \\
y_1 & \in B(y, \eta/5), & f(y_1) & \in B(f(y), \varepsilon/5).
\end{align*}
\]

Clearly \(d(y_0, y) < \eta/5\) and \(d(y_1, y) < \eta/5\). Also \(d(f(y_0), f(y)) < \varepsilon/5\) and \(d(f(y_1), f(y)) < \varepsilon/5\).

Now there exist connected open subsets \(U_0\) and \(U_1\) of \(I^2\) with connected boundaries \(C_0\) and \(C_1\) such that
$y_0 \in U_0$, $\bar{U}_0 \subset B(y_0, \eta_0/5)$, $f(C_0) \subset B(f(y_0), \epsilon/5^2)$

and

$y_1 \in U_1$, $\bar{U}_1 \subset B(y_1, \eta_1/5)$, $f(C_1) \subset B(f(y_1), \epsilon/5^2)$

where $\eta_0 = d(y_0, y)$ and $\eta_1 = d(y_1, y)$. So $\eta_0 < \eta/5$ and $\eta_1 < \eta/5$.

Now C_0 has points $y_{00}, y_{01} \in I$ and C_1 has points $y_{10}, y_{11} \in I$ such that

$a < y_{00} < y_0 < y_{01} < y < y_{10} < y_1 < y_{11} < b,$

$y_{00}, y_{01} \in B(y_0, \eta_0/5), f(y_{00}), f(y_{01}) \in B(f(y_0), \epsilon/5^2)$,

$y_{10}, y_{11} \in B(y_1, \eta_1/5), f(y_{10}), f(y_{11}) \in B(f(y_1), \epsilon/5^2)$.

There exists connected open subsets $U_{00}, U_{01}, U_{10}, U_{11}$

of I^2 with connected boundaries $C_{00}, C_{01}, C_{10}, C_{11}$ such that

$y_{00} \in U_{00}$, $\bar{U}_{00} \subset B(y_{00}, \eta_{00}/5)$, $f(C_{00}) \subset B(f(y_{00}), \epsilon/5^3)$,

$y_{01} \in U_{01}$, $\bar{U}_{01} \subset B(y_{01}, \eta_{01}/5)$, $f(C_{01}) \subset B(f(y_{01}), \epsilon/5^3)$,

$y_{10} \in U_{10}$, $\bar{U}_{10} \subset B(y_{10}, \eta_{10}/5)$, $f(C_{10}) \subset B(f(y_{10}), \epsilon/5^3)$,

$y_{11} \in U_{11}$, $\bar{U}_{11} \subset B(y_{11}, \eta_{11}/5)$, $f(C_{11}) \subset B(f(y_{11}), \epsilon/5^3)$,

where $\eta_{00} = d(y_{00}, y_0), \eta_{01} = d(y_{01}, y_0), \eta_{10} = d(y_{10}, y_1)$, and $\eta_{11} = d(y_{11}, y_1)$.

Now C_{00} has points $y_{000}, y_{001} \in I$, C_{01} has points $y_{010}, y_{011} \in I$, C_{10} has points $y_{100}, y_{101} \in I$, and C_{11} has points $y_{110}, y_{111} \in I$ such that $a < y_{000} < y_{00} < y_{001} < y_0 < y_{01} < y_{011} < y < y_{10} < y_{100} < y_{101} < y_1 < y_{11} < y_{111} < b.$

$y_{000}, y_{001} \in B(y_{00}, \eta_{00}/5)$, $f(y_{000}), f(y_{001}) \in B(f(y_{00}), \epsilon/5^3)$,

$y_{010}, y_{011} \in B(y_{01}, \eta_{01}/5)$, $f(y_{010}), f(y_{011}) \in B(f(y_{01}), \epsilon/5^3)$,

$y_{100}, y_{101} \in B(y_{10}, \eta_{10}/5)$, $f(y_{100}), f(y_{101}) \in B(f(y_{10}), \epsilon/5^3)$,

and

$y_{110}, y_{111} \in B(y_{11}, \eta_{11}/5)$, $f(y_{110}), f(y_{111}) \in B(f(y_{11}), \epsilon/5^3)$.
Continuing this process let a be a finite sequence of 0's and 1's of length k. Thus for y_a we obtain

$$y_{a0} < y_a < y_{a1},$$
$$y_{a0} \in B(y_a, \eta_a/5),$$
$$y_{a1} \in B(y_a, \eta_a/5),$$
$$\eta_{a0} = d(y_{a0}, y_a),$$
$$\overline{a}_{a0} \subseteq B(y_{a0}, \eta_{a0}/5),$$
$$f(C_{a0}) \subseteq B(f(y_{a0}), \varepsilon/5^{k+2}),$$
$$\eta_{a1} = d(y_{a1}, y_a),$$
$$\overline{a}_{a1} \subseteq B(y_{a1}, \eta_{a1}/5),$$
$$f(C_{a1}) \subseteq B(f(y_{a1}), \varepsilon/5^{k+2})$$

where $\eta_{a0} = d(y_{a0}, y_a)$ and $\eta_{a1} = d(y_{a1}, y_a)$. Now C_{a0} has points $y_{a00}, y_{a01} \in I$ and C_{a1} has points $y_{a10}, y_{a11} \in I$ such that

$$y_{a00} < y_{a0} < y_{a01} < y_a < y_{a10} < y_{a1} < y_{a11},$$
$$y_{a00}, y_{a01} \in B(y_{a0}, \eta_{a0}/5), f(y_{a00}), f(y_{a01}) \in B(f(y_{a0}), \varepsilon/5^{k+2}),$$
$$y_{a10}, y_{a11} \in B(y_{a1}, \eta_{a1}/5), f(y_{a10}), f(y_{a11}) \in B(f(y_{a1}), \varepsilon/5^{k+2}).$$

We now claim that if a and β are finite binary sequences of equal length n of the form $a = \gamma_0\mu$ and $\beta = \gamma_1\nu$ where γ is of length $k \leq n-1$, then

1. $y_a < y_\beta$,
2. $3/4(\eta_0+\eta_1) \leq |y_a - y_\beta| \leq 5/4(\eta_0+\eta_1)$, and
3. $|f(y_a) - f(y_\beta)| < \varepsilon/2(5^k)$.

By construction $y_a < y_\beta$ and $y_{\gamma_0} < y_{\gamma_1}$. Thus $y_{\gamma_1} - y_{\gamma_0} = y_{\gamma_1} - y_\gamma + y_\gamma - y_{\gamma_0} = \eta_{\gamma_0} + \eta_{\gamma_1}$. Also

$$d(y_a, y_{\gamma_0}) < \eta_{\gamma_0}(1/5 + (1/5^2) + \cdots + (1/5^{n-k})) < \frac{1}{4} \eta_{\gamma_0}$$
and
$$d(y_\beta, y_{\gamma_1}) < \eta_{\gamma_1}(1/5 + (1/5^2) + \cdots + (1/5^{n-k})) < \frac{1}{4} \eta_{\gamma_1}.$$

From this it follows that (2) is true.
Now $|f(y_0) - f(y_\gamma)| < \varepsilon/5^{k+1}$ and $|f(y_{k+1}) - f(y_\gamma)| < \varepsilon/5^{k+1}$,

$|f(y_\alpha) - f(y_\gamma)| < \varepsilon((1/5^k) + (1/5^{k+1}) + \cdots + (1/5^n))$, and

$|f(y_\beta) - f(y_\gamma)| < \varepsilon((1/5^k) + (1/5^{k+1}) + \cdots + (1/5^n))$.

So $|f(y_\alpha) - f(y_\beta)| < 2\varepsilon((1/5^k) + (1/5^{k+1}) + \cdots + (1/5^n))$

$< 2\varepsilon(1/5^k)(1/4)$

$= \varepsilon/2(5^k)$.

Let $\alpha(n)$ denote a binary sequence with n terms such that the first $n-1$ terms of $\alpha(n)$ is $\alpha(n-1)$. Define

$$Y_\alpha = \lim_{n \to \infty} Y_\alpha(n).$$

Then the previous claim holds true for infinite sequences α and β. We now prove that $f(y_\alpha) = \lim_{n \to \infty} f(y_\alpha(n))$. Each $C_\alpha(k+1)$ intersects $C_\alpha(k)$ since one point of $C_\alpha(k+1)$ is inside the interval formed by $C_\alpha(k)$ and one point is outside. Thus for any γ of length k the union of all sets C_γ/γ is a connected set and its image points differ from $f(y_\gamma)$ by at most $(\varepsilon/5^k) + (\varepsilon/5^{k+1}) + \cdots = \varepsilon/4(5^{k-1})$. Since f is a Darboux function (the image of connected sets is connected),

$$f(\overline{UC_\gamma/\gamma}) \subseteq \overline{f(UC_\gamma/\gamma)} \subseteq B(f(y_\gamma), \varepsilon/4(5^{k-1})).$$

Thus $d(f(y_\alpha), f(y_\alpha(n))) < \varepsilon/4(5^{n-1})$ where $\alpha(n) = \gamma$ and it follows that $f(y_\alpha(n))$ converges to $f(y_\alpha)$.

Now it follows that the function defined by the assignment $\alpha \to y_\alpha$ is a homeomorphism from a Cantor set to $S = \{y_\alpha\}$. Thus S is a Cantor set and $f(S) \subseteq (f(a), f(b))$. So $f| I \times 0$ has the WCIVP and $f|S$ is continuous.

Example 2. The first example of [2] is an example of an almost continuous function $I \to I$ which does not have the WCIVP. For completeness that example will be described here. There exists a subset $G \subseteq I$ which intersects every
Cantor set in every interval \((a,b)\) but contains no Cantor set. Thus \(G \cap (a,b)\) contains \(c\) points. Let \(F_1 = \{(x,0) : x \notin G\}\). Consider the collection \(\{K\}\) of closed subsets of \(\mathbb{I}^2\) such that the \(x\)-projection of \(K\) has cardinality \(c\). The \(x\)-projection of any set in the collection is closed and contains a Cantor set. Hence it contains a point of \(G\).

Select a subset \(F_2 \subset \mathbb{I}^2\) by transfinite induction such that

1. \(F_2\) intersects each member of the collection \(\{K\}\) and
2. if \(p\) and \(q\) are distinct points of \(F_2\), then their \(x\)-projections are distinct points of \(G\).

Let \(F_3 = \{(t,1) : t \in I\) but \(t\) is neither in the \(x\)-projection of \(F_1\) nor in the \(x\)-projection of \(F_2\}\).

Let \(f = F_1 \cup F_2 \cup F_3\). Then the \(x\)-projection of \(f\) is \(I\) and \(f\) is the graph of a function \(f : I \rightarrow I\).

Remarks. The second example of \([2]\) is an example of a function \(I \rightarrow I\) which has the WCIIP but is not a Darboux function. Also, it follows that if \(f : I \rightarrow I\) is continuous then \(f\) has the P.

References

Columbus College
Columbus, Georgia 31900

and

Alabama State University
Montgomery, Alabama 36101