DECOMPOSITIONS FOR CLOSED MAPS

by

Yoshio Tanaka and Yukinobu Yajima
DECOMPOSITIONS FOR CLOSED MAPS

Yoshio Tanaka and Yukinobu Yajima

Introduction

Well-known decomposition theorems for closed maps are given by the following type (L):

(L) For spaces X, Y and a closed map $f: X \to Y$,

$$Y = \bigcup_{n=1}^{\infty} Y_n,$$

where $f^{-1}(y)$ is compact for each $y \in Y_0$ and Y_n is closed discrete in Y for each $n \geq 1$.

First, Morita [10] showed that the following special type (M) of (L) holds for any paracompact and locally compact space X.

(M) For spaces X, Y and a closed map $f: X \to Y$,

$$Y = \bigcup_{n=1}^{\infty} Y_n,$$

where $f^{-1}(y)$ is compact for each $y \in Y_0$ and Y_n is closed discrete in Y.

Lašnev [7] proved that (L) holds for any metric space X. Subsequently, Filippov [4] extended this result, showing that (L) holds for any paracompact M-space X. Moreover, many mathematicians extended Lašnev's "decomposition theorem" for several generalized metric spaces (for example, see [14] and [15] etc.). In particular, recently, Chaber [2] proved that (L) holds for any regular σ-space X.

Now, let us consider the following modifications (wL) and (wL)' of (L), which are the weakening of the compactness of $f^{-1}(y)$ in (L):

(wL) In (L), the $f^{-1}(y)$ is Lindelöf for each $y \in Y_0$.

(wL)' In (L), the $f^{-1}(y)$ is ω_1-compact for each $y \in Y_0$.
Here, we say that a space X is ω_1-compact if every uncountable subset of X has a cluster point in X. Every Lindelöf space is ω_1-compact. It should be remarked that the condition (wL) was considered in [2], where it was labeled (**). The modifications (wM) and (wM)' of (M) are to be made similarly. That is,

(wM) In (M), the $f^{-1}(y)$ is Lindelöf for each $y \in Y_0$.
(wM)' In (M), the $f^{-1}(y)$ is ω_1-compact for each $y \in Y_0$.

In Section 1, we investigate the decomposition types (wL), (wL)', and some variations of these types. Nagami [12] introduced the notion of Σ-spaces as a generalization of σ-spaces and M-spaces. We prove that (wL)' holds for any Σ-space X, thus (wL) holds for any strong Σ-space X. We shall remark that it is impossible to replace (wL) with (L) for every regular Lindelöf Σ-space X.

In Section 2, we discuss the decomposition types (M), (wM) and (wM)'. We prove that (M) holds for any space X dominated by compact sets X_α', or determined by a point-countable cover of compact sets X_α. If the X_α's are Lindelöf; ω_1-compact, then (wM); (wM)' holds respectively.

We assume that all spaces are T_1, and all maps are continuous and onto.

1. Decomposition Types (wL) and (wL)'

Let $A = \{A_\lambda: \lambda \in \Lambda\}$ be a collection of subsets of a space X. We say that A is hereditarily closure-preserving (abbreviated by HCP) if any collection $\{B_\lambda: \lambda \in \Lambda\}$ with $B_\lambda \subset A_\lambda$ for each $\lambda \in \Lambda$ is closure-preserving (that is, $\cup\{B_\lambda: \lambda \in \Lambda'\} = \cup\{B_\lambda: \lambda \in \Lambda'\}$ for any $\Lambda' \subset \Lambda$).
Lemma 1.1 ([15, Lemma 5.4]). Let Y be a space, and J a HCP collection of closed sets in Y. For each $n \geq 1$, let

$$Y_n = \bigcup \{ F_1 \cap \cdots \cap F_n : F_i \in J \text{ and } F_1 \cap \cdots \cap F_n \text{ is a non-empty finite set} \}.$$

Then each Y_n is a closed discrete subset of Y.

Proof. It is routinely verified that each collection

$$\{ F_1 \cap \cdots \cap F_n : F_i \in J \text{ (i = 1, \cdots, n)} \}$$

is HCP. Thus each subset of Y_n is closed in Y. Hence each Y_n is closed discrete in Y.

Let K be a cover of a space X. A cover J is called a (mod K)-net for X [9], if, whenever $K \subset U$ with $K \in K$ and U open in X, there is some $F \in J$ such that $K \subset F \subset U$.

Lemma 1.2. Let X be a space, and K a cover of X by countably compact sets. If X has a (mod K)-net J which is countable, then it is ω_1-compact.

Proof. Assume the contrary. Then there is an uncountable closed discrete subset D of X. For each $K \in K$, since K is countably compact, $D \cap K$ is at most finite. Thus there is some $F_K \in J$ such that $K \subset F_K$ and $D \cap F_K$ is at most finite. But, since J is countable and K is a cover of X, we may assume that $\{ F_K : K \in K \}$ is a countable cover of X. Thus there is some $F_K \in J$ such that $D \cap F_K$ is infinite. This is a contradiction.

A space X is called a Σ-space [12] (Σ^*-space [13]) if it has a σ-locally finite (σ-HCP) closed (mod K)-net $J = \bigcup_{n=1}^{\infty} J_n$ for some closed cover K by countably compact sets. Here we can assume that J_n is a locally finite (HCP) closed
cover of X and $J_n \subseteq J_{n+1}$ for each $n \geq 1$. It should be noted that any sequence $\{x_n\}$ such that

$$x_n \in \cap \{F \in J_n : x \in F\}$$

for some $x \in X$ has a cluster point in X. Such a sequence $\{J_n\}$ is called a Σ-net (Σ^*-net) of X.

Theorem 1.3. If X is a Σ-space, then (wL)' holds.

Proof. Let $\{J_n\}$ be a Σ-net of X. We may assume that each J_n is finitely multiplicative. For each $n \geq 1$, put

$$Y_n = \bigcup \{f(F) \cap f(F') : F, F' \in J_n \text{ and } f(F) \cap f(F') \text{ is a non-empty finite set}\}.$$

Since each J_n is locally finite in X and f is a closed map, $\{f(F) : F \in J_n\}$ is HCP. It follows from Lemma 1.1 that Y_n is closed discrete in Y for each $n \geq 1$. Put $Y_0 = Y \setminus \bigcup_{n=1}^{\infty} Y_n$. Pick any $y \in Y_0$. Let us show that $f^{-1}(y)$ is ω_1-compact. It suffices to show from Lemma 1.2 that the subcollection $\{F \in J_n : F \cap f^{-1}(y) \neq \emptyset\}$ of J_n is finite for each $n \geq 1$.

Assume the contrary. Then there are some $m \geq 1$ and a sequence $\{F_n\}$ of distinct members of J_m such that each F_n meets $f^{-1}(y)$. Pick an $x_0 \in f^{-1}(y)$. By the choice of $\{J_n\}$, $E_n = \cap \{F \in J_n : x_0 \in F\}$ and F_n belong to J_n for each $n \geq m$. Since $y \in f(E_n) \cap f(F_n \setminus Y_n)$, $f(E_n) \cap f(F_n)$ is an infinite set. So we can choose a sequence $\{y_n\}_{n \geq m}$ of distinct points in Y such that $y_n \in f(E_n) \cap f(F_n)$. For each $n \geq m$, pick two points p_n and q_n from $E_n \cap f^{-1}(y_n)$ and $F_n \cap f^{-1}(y_n)$, respectively. Since $\{p_n\}_{n \geq m}$ has a cluster point in X, $\{y_n\}_{n \geq m}$ has also a cluster point in Y. On the other hand, $\{q_n : n \geq m\}$ is closed discrete in X, because $\{F_n : n \geq m\}$ is locally finite in X. Thus, since f is a closed map, $\{y_n : n \geq m\}$ is also closed.
discrete in Y. This contradiction completes the proof.

A space is called a strong Σ-spaces \cite{12} if it satisfies the definition of a Σ-space for some closed cover C by compact sets instead of K. By \cite[Proposition 4.4]{6}, an ω_1-compact, strong Σ-space is Lindelöf. So Theorem 1.3 yields

Corollary 1.4. If X is a strong Σ-space, then (wL) holds.

Remark. In the previous corollary, by \cite[Example 5.12]{15} or \cite[Example 1.2]{2}, we cannot replace "Lindelöf" with "compact" even if X is regular σ-compact. Chaber \cite{2} showed that Corollary 1.4 holds under the assumption of X being a k-space.

Next, we proceed with some variations of (wL) or (wL)'.

Theorem 1.5. Let $f: X \to Y$ be a closed map. If X is a Σ^*-space, then $Y = Y_0 \cup \left(\bigcup_{n=1}^{\infty} Y_n \right)$, where $f^{-1}(y)$ is ω_1-compact for each $y \in Y_0$ and Y_n is a discrete set such that $\bigcup_{i=1}^{n} Y_i$ is closed in Y for each $n \geq 1$.

Proof. Let $\{J_n\}$ be a Σ^*-net of X. For each $n \geq 1$, put

$$C_n = \{f(nC) \cap f(F) : C \subseteq J_n, F \subseteq J_n \text{ and } f(nC) \cap f(F) \text{ is a non-empty finite set} \}.$$

Since each J_n is a closure-preserving closed cover of X and f is a closed map, each C_n is a closure-preserving collection by finite sets. Then $Y'_n = \bigcup C_n$ is a closed set in Y with a closure-preserving cover by finite sets for each $n \geq 1$. By \cite[Theorem 1]{16}, we have $Y'_n = \bigcup_{k=1}^{\infty} Y'_{nk}$, where Y'_{nk} is a discrete
subset and \(\bigcup_{i=1}^{k} Y_{n_{i}} \) is closed in \(Y_n \) for each \(k > 1 \). Hence \(\bigcup_{n=1}^{\infty} Y_{n} \) can be represented as \(\bigcup_{n=1}^{\infty} Y_{n} \) described in the theorem. Put \(Y_{0} = Y \setminus \bigcup_{n=1}^{\infty} Y_{n} \). Pick any \(y \in Y_{0} \). By a similar way as in the proof of Theorem 1, we can show that the subcollection \(\{ F \in J_{n} : F \cap f^{-1}(y) \neq \emptyset \} \) of \(J_{n} \) is finite for each \(n > 1 \). Thus, it follows from Lemma 1.2 that \(f^{-1}(y) \) is \(\omega_{1} \)-compact.

The proof is complete.

Let \(\{ F_{n} \} \) be a sequence of subsets of a space \(X \). We say that \(\{ F_{n} \} \) converges to \(E \subset X \) if for any open set \(V \) with \(E \subset V \) there is some \(m \geq 1 \) such that \(V \) contains \(F_{n} \) for each \(n \geq m \). The following lemma is a modification of Lašnev's lemma in [7].

Lemma 1.6. Let \(\{ F_{n} \} \) be a sequence of non-empty closed sets in a regular space \(X \), and let \(E \) be a closed Lindelöf subspace of \(X \). If \(\{ F_{n} \} \) converges to \(E \) and each \(F_{n} \) is disjoint from \(E \), then \(K = E \cap \bigcup_{n=1}^{\infty} F_{n} \) is compact.

Proof. Suppose that \(K \) is not countably compact. Since \(X \) is regular and \(K \) is Lindelöf, there is an increasing sequence \(\{ U_{k} \} \) of open sets in \(X \) such that \(K \subset \bigcup_{k=1}^{\infty} U_{k} \) and \((U_{k} \setminus U_{k-1}) \cap K \neq \emptyset \) for each \(k > 1 \), where \(U_{0} = \emptyset \) (This choice is seen in the proof of [2, Theorem 1.1]). Since each \(U_{k} \setminus U_{k-1} \) meets infinitely many \(F_{n} \)'s, there are two sequences \(\{ n_{k} \} \) and \(\{ x_{k} \} \) such that \(n_{k} < n_{k+1} \) and \(x_{k} \in (U_{k} \setminus U_{k-1}) \cap F_{n_{k}} \) for each \(k > 1 \). Put \(G = X \setminus \{ x_{k} : k \geq 1 \} \). Then \(G \) is an open set in \(X \). If \(x \in E \setminus K \), then \(x \notin \bigcup_{n=1}^{\infty} F_{n} \supset \bigcup_{k=1}^{\infty} F_{n_{k}} \supset \{ x_{k} : k \geq 1 \} = X \setminus G \).

Let \(x \in E \cap K \). Take some \(m \geq 1 \) with \(x \in U_{m} \). Since
$x_k \not\in \bigcup_{k=1}^{m} U_m$ for each $k > m$, $x \not\in \{x_k : k > m\}$. Since $x \notin E$ and $x_k \notin F_n$, $x \neq x_k$ for each $k > 1$. These imply $x \not\in \{x_k : k > 1\} = X \setminus G$. Thus, we have $E \subset G$. But G does not contain any F_n's. This contradicts to the fact that $\{F_n\}$ converges to E. So we conclude that K is countably compact. Therefore, K is compact.

Using Lemma 1.6 instead of [14, Lemma 2.1], the proof of the following theorem is quite parallel to that of [14, Theorem 1.2]. So the details are left to the reader.

Theorem 1.7. Let $f : X \to Y$ be a closed map. If X is a regular semi-stratifiable space [3], then

$$\{y \in Y : f^{-1}(y) \text{ is Lindelöf}\} = Y_0 \cup (\bigcup_{n=1}^{\infty} Z_n),$$

where $f^{-1}(y)$ is compact for each $y \in Y_0$ and Z_n is closed discrete in Y for each $n > 1$.

Since σ-spaces are semi-stratifiable, strong E-spaces, the following is an immediate consequence of Corollary 1.4 and Theorem 1.7.

Corollary 1.8 ([2, Theorem 1.1]). If X is a regular σ-space, then (L) holds.

2. Decomposition Types (M), (wM) and (wM)'

Let us recall basic definitions concerning weak topologies. Let X be a space, and C be a cover of X. We say that X is determined by C [5], or X has the weak topology with respect to C, if $A \subset X$ is closed (open) in X whenever $A \cap C$ is relatively closed (relatively open) in C for each $C \in C$. Every space is determined by any open cover of it.
Let C be a closed cover of X. We say that X is dominated by C if for any subcollection C' of C the union $\bigcup C'$ is closed in X and is determined by C'. Every space is dominated by any HCP closed cover of it. We remark that if X is dominated by C, then it is determined by C, but the converse is not true.

The following elementary facts will be often used later on. The proof is straightforward, so we omit it.

Lemma 2.1. (1) Let $f: X \to Y$ be a quotient map. If X is determined by a cover C, then Y is determined by a cover $f(C) = \{f(C): C \in C\}$.

(2) Let X be determined by a cover $\{X_\alpha\}$. If $X_\alpha \subset X'_\alpha$ for each α, then X is determined by $\{X'_\alpha\}$.

Recall that a collection C of subsets of X is point-countable if each $x \in X$ is in at most countably many $C \in C$.

Theorem 2.2. (1) If a space X is dominated by a cover C of compact (Lindelöf; ω_1-compact) sets, then (M) $((\text{WM}); (\text{WM})')$ holds.

(2) If a space X is determined by a point-countable cover C of compact (Lindelöf; ω_1-compact) sets, then (M) $((\text{WM}); (\text{WM})')$ holds.

Proof. (1): Let $C = \{X_\alpha\}$ with the index set well-ordered. Suppose that each X_α is ω_1-compact (for the other cases, the proofs are similar). Let $L_\alpha = X_\alpha \setminus \bigcup_{\beta < \alpha} X_\beta$ for each α. Since $\{L_\alpha\}$ is a cover of X and $L_\alpha \subset X'_\alpha$, it suffices to show that
$Y_1 = \{y \in Y : f^{-1}(y) \text{ meets uncountably many } L_\alpha \text{'s}\}$ is closed discrete in Y.

Claim 1. For any $D \subseteq Y_1$ with cardinality $\leq \omega_1$, D is closed in Y:

Let $D = \{y_\beta : \beta < \kappa\}$, where $\kappa \leq \omega_1$. For each $\beta < \kappa$, we can choose some x_β and $a(\beta)$ such that $x_\beta \in f^{-1}(y_\beta) \cap L_\alpha(\beta)$ and $a(\beta) \neq a(\beta')$ for $\beta \neq \beta'$. Let $E = \{x_\beta : \beta < \kappa\}$. We show that E is closed in X. First, $E \cap X_0$ is at most one point, hence closed in X_0. Assume that $E \cap X_\lambda$ is closed in X_λ for each $\lambda < \eta$. Let $E_\eta = (E \cap (\cup_{\lambda < \eta} X_\lambda)) \cap X_\eta$. Then $E_\eta \subseteq \cup_{\lambda < \eta} X_\lambda$, and $E_\eta \cap X_\lambda = (E \cap X_\lambda) \cap X_\eta$ is closed in X_λ for each $\lambda < \eta$. Thus E_η is closed in X. But, $E \cap X_\eta = (E \cap L_\eta) \cup E_\eta$, and $E \cap L_\eta$ is at most one point. Hence $E \cap X_\eta$ is closed in X_η. Thus E is closed in X. Since f is a closed map and $D = f(E)$, D is closed in Y.

Claim 2. For any $Y' \subseteq Y_1$ and for any ω_1-compact set $K \subseteq Y$, $Y' \cap K$ is closed in K:

If $Y' \cap K$ is countable, by Claim 1, $Y' \cap K$ is closed in Y. Hence it is closed in K. If $Y' \cap K$ is not countable, then there is a subset D of $Y' \cap K$ such that the cardinality of D is ω_1 and D has a cluster point in $K \setminus D$. But, by Claim 1, D is closed in Y. This contradiction implies that $Y' \cap K$ is countable, hence closed in K.

Now, X is determined by a cover \mathcal{C} of ω_1-compact sets. Since f is quotient, by Lemma 2.1 (1), Y is determined by a cover $f(\mathcal{C})$ of ω_1-compact sets. Thus it follows from Claim 2 that Y_1 is closed discrete in Y. Hence $(\text{wM})'$ holds.
(2): Let $C = \{X_\alpha\}$. Suppose that each X_α is ω_1-compact (for the case of X_α being Lindelöf, the proof is similar). Let

$$Y_1 = \{y \in Y: \text{no countable } C' \subset C \text{ covers } f^{-1}(y)\}.$$

Let $D = \{y_\beta: \beta < \kappa\}$, where $\kappa \leq \omega_1$, be a subset of Y_1. Then there is some

$$x_\beta \in f^{-1}(y_\beta) \cup \{x_\gamma: x_\gamma \in X_\alpha \text{ for some } \gamma < \beta\}$$

for each $\beta < \kappa$. Let $E = \{x_\beta: \beta < \kappa\}$. Since each $E \cap X_\alpha$ is at most one point, E is closed in X. Then $D = f(E)$ is closed in Y. Thus Claim 1 in (1) is also valid.

Next, suppose that each X_α is compact. Let

$$Y_1^* = \{y \in Y: \text{no finite } C' \subset C \text{ covers } f^{-1}(y)\}.$$

Then we can show that any countable $D = \{y_n: n \geq 1\} \subset Y_1^*$ is closed in Y. Indeed, there is some

$$x_n \in f^{-1}(y_n) \cup \{x_{ij}: i, j \leq n\} \text{ for each } n \geq 1,$$

where $\{x_{ij}: j \geq 1\} = \{x_\alpha: x_i \in X_\alpha\} \text{ for each } i \geq 1$. Let $E = \{x_n: n \geq 1\}$. Since each $E \cap X_\alpha$ is at most finite, E is closed in X. Then $D = f(E)$ is closed in Y. Thus the modification of Claim 1 in (1) where "ω_1" is replaced with "ω_0" is valid.

As in the proof of (1), if the X_α's are respectively ω_1-compact; compact, we can show that the set $Y_1; Y_1^*$ is closed discrete in Y, hence $(wM)'$; (M) holds. The proof of Theorem 2.2 is complete.

As is well-known, every CW-complex is dominated by a cover of compact (metric) sets. So, by Theorem 2.2 (1), we have
Corollary 2.3. If X is a CW-complex (more generally, a chunk-complex in the sense of [1]), then (M) holds.

A space is called a k_ω-space [8] (Morita [11] calls it a space of the class \mathcal{G}') if it is determined by a countable cover of compact sets. Such a space is characterized as a quotient image of a locally compact Lindelöf space [11].

By Theorem 2.2 (2), if X is a k_ω-space, then (M) holds. It should be noted by Remark to Corollary 1.4 that we cannot replace "k_ω-space" with "σ-compact space."

Let us call a space locally k_ω (locally Lindelöf) if each point has a neighborhood which is k_ω (Lindelöf), where the neighborhood is not necessarily open. Every locally compact space is locally k_ω, and every locally k_ω-space is locally Lindelöf. Recall that a space X is meta-Lindelöf if every open cover of X has a point-countable open refinement.

Morita [10] showed that if X is a paracompact and locally compact space, then (M) holds. We can extend this result as follows.

Proposition 2.4. If X is a meta-Lindelöf and locally k_ω-space, then (M) holds.

Proof. By the assumptions of X, X is determined by a point-countable open cover $\{V_\alpha\}$, where each V_α is contained in a space determined by a countable cover $\{K_{an} : n \geq 1\}$ of compact sets. Let $C = \{V_\alpha \cap K_{an}\}$. Then it is routinely verified that X is determined by the point-countable cover C. But, by Lemma 2.1 (1), Y is determined by the cover...
f(\mathcal{C}). Since f(V \cap K_{an}) \subseteq f(K_{an}) for each \alpha and n, by Lemma 2.1 (2), Y is determined by the cover \{f(K_{an})\} of compact sets. Let

$$Y^*_1 = \{y \in Y: \text{no finite } \mathcal{C}' \subseteq \mathcal{C} \text{ covers } f^{-1}(y)\}.$$

By the proof of Theorem 2.2 (2) for the compact case, we can show that \(Y^*_1\) is closed discrete in \(Y\). Hence (M) holds.

Proposition 2.5. Let \(X\) be a locally Lindelöf space. If \(X\) is subparacompact (meta-Lindelöf), then \((wL) ((wM))\) holds.

Proof. If \(X\) is subparacompact, then \(X\) has a \(\sigma\)-locally finite closed cover \(J = \bigcup_{n=1}^{\infty} J_n\) of Lindelöf sets, where each \(J_n\) is locally finite in \(X\). Let \(X_n = \bigcup_j J_n\) and \(Y_n = f(X_n)\) for each \(n \geq 1\). Then each \(X_n\) is dominated by \(J_n\) and \(Y_n = f|_{X_n}\) is closed. Thus, by Theorem 2.2 (1), \(Y_n = Y_{n0} \cup Y_{n1}\), where \(g^{-1}_n(y)\) is Lindelöf for each \(y \in Y_{n0}\) and \(Y_{n1}\) is closed discrete in \(Y_n\), hence in \(Y\). Let \(Y_0 = Y \setminus \bigcup_{n=0}^{\infty} Y_{n1}\) and \(Y_n = Y_{n1}\) for each \(n \geq 1\). Then the sets \(Y_n\), \(n \geq 0\), satisfy the desired property in \((wL)\).

If \(X\) is meta-Lindelöf, then \(X\) is determined by a point-countable open cover \(\{V_{\alpha}\}\) such that each \(V_{\alpha}\) is contained in a Lindelöf set \(L_{\alpha}\). But, by Lemma 2.1 (1), \(Y\) is determined by a cover \(\{f(V_{\alpha})\}\). Since \(f(V_{\alpha}) \subseteq f(L_{\alpha})\) for each \(\alpha\), by Lemma 2.1 (2), \(Y\) is determined by a cover \(\{f(L_{\alpha})\}\) of Lindelöf sets. Thus, in view of the proof of Theorem 2.2 (2), the assertion for the parenthetic part holds.

References

Tokyo Gakugei University
Koganei-shi, Tokyo 184, Japan

and

Kanagawa University
Yokohama 221, Japan