THE MEASURE ON S-CLOSED SPACES

by

FENG DING
THE MEASURE ON S-CLOSED SPACES

Feng Ding

1. Introduction

In functional analysis, $C(X)$ is a beautiful space, where $X = [0,1]$. Riesz gave a well-known conclusion--The dual of $C(X)$ is the space of all finite signed measures on X with the norm defined by $||v|| = |v|(X)$. If X is a compact and Hausdorff space, the same result can be obtained. Thompson [1] first introduced the concept of S-closed spaces. References [2-4] studied a series of topological properties of S-closed spaces. In this paper, a measure on S-closed spaces with certain properties is constructed. Some S-closed spaces are neither compact nor Hausdorff, but some interesting results can still be obtained. For example, if X is a S-closed space, then to each bounded linear functional F on $C(X)$, the set of all continuous real-valued functions on X, there corresponds exactly one finite signed F-S measure v on X such that $F(f) = \int fdv$, for each $f \in C(X)$ and $||F|| = |v|(X)$.

Let X be a topological space; a set $P \subset X$ is called a regular closed set of X, if $P = P^O\cap P^\circ$, where \circ and $-$ are the interior and the closure operations on X; a set $Q \subset X$ is called a regular open set of X, if $Q = Q^O\cap Q^\circ$. A topological space X is said to be S-closed if every cover for X, consisting of regular closed sets, has a finite subcover.
Example 1. Let \(S = \{x: 0 < x < 1\} \) be the open unit interval. \(\tau = \{\phi\} \cup \{X\setminus A: A \subset X \text{ and } |A| \leq \omega_0\} \). Then \(X = (S, \tau) \) is a topological space.

Let \(A \subset X \). If \(A \) is countable, then \(A^O = \phi \); and if \(A \) is uncountable, then \(A^- = X \). Whence there are only two regular closed sets in \(X \). It is not hard to see that \(X \) is an S-closed \(T_1 \) space, but not a Hausdorff space; therefore, not a compact space either.

Let \(X \) be a topological space; \(A \subset X \) is said to be an S-closed set of \(X \) if every cover of regular closed sets in \(X \) for \(A \) has a finite subcover.

Proposition 1. The finite union of S-closed sets of a topological space is S-closed.

The proof is straightforward and is omitted.

Proposition 2. If \(P \) is a regular closed set of an S-closed space \(X \), then \(P \) is S-closed.

Proof. Let \(\{U_t: t \in T\} \) be a family of regular closed sets of \(X \), which covers \(P \). That is
\[
\bigcap\{X - U_t: t \in T\} \subset X - P \subset (X - P)^-.
\]
It follows from Theorem 4 in [3] that there exists a finite subfamily \(\{X - U_{t_1}, \ldots, X - U_{t_n}\} \) such that
\[
\bigcap_{t=1}^n (X - U_{t_i}) \subset (X - P)^-.
\]
From that \(P \) is a regular closed set it follows that
\[
(X - P)^O = X - P \quad \text{and that}
\[
\left[\bigcap_{i=1}^n (X - U_{t_i})\right]^O = \bigcap_{i=1}^n (X - U_{t_i}) \subset (X - P)^- = X - P.
\]
This implies that $P \subseteq \bigcup_{i=1}^{n} U_i$.

Proposition 3. If $g: X \to Y$ is a continuous mapping from an S-closed space X into a metric space Y, then $g(X)$ is a bounded set of Y.

Proof. For every $x \in X$, choose a unit open ball $V_x = B(g(x), 1)$ of $g(x)$. The continuity of g implies that $[g^{-1}(V_x)]^-$ is regular closed in X, and

$$\bigcup \{[g^{-1}(V_x)]^- : x \in X\} \supset\! X.$$

Since X is an S-closed space, there exists a finite family $\{[g^{-1}(V_{x_i})]^- : i = 1, 2, \ldots, n\}$ such that

$$\bigcup_{i=1}^{n} [g^{-1}(V_{x_i})]^- \supset\! X.$$

It follows from the continuity of g that

$$\bigcup_{i=1}^{n} V_{x_i}^- = [\bigcup_{i=1}^{n} g \circ g^{-1}(V_{x_i})]^- \supset\! g(X).$$

This implies that $g(X)$ is bounded.

A topological space X is called a locally S-closed space if for every $x \in X$, there exists a neighborhood U_x of the point x such that U_x^- is contained in an S-closed set of X.

Proposition 4. Every S-closed set of a T_1 space X is closed.

Proof. Let A be an S-closed set of X and let p be a point of $X \setminus A$. For every $x \in X \setminus \{p\}$, there exists a regular open neighborhood U_x of the point p such that $x \notin U_x$ and that $\cap\{U_x : x \in X \setminus \{p\}\} = \{p\}$. Hence

$$X \setminus \{p\} = \bigcup \{X \setminus U_x : x \in X \setminus \{p\}\} \supset A.$$
As A is an S-closed set of X, there exists a finite family
\[\{X \setminus U_{x_1}, X \setminus U_{x_2}, \ldots, X \setminus U_{x_k}\} \]
such that
\[\bigcup_{j=1}^{k} (X \setminus U_{x_j}) \supseteq A. \]
Take $U(p) = \cap_{j=1}^{k} U_{x_j}$. Hence $U(p) \cap A = \emptyset$. That is $U(p) \subseteq X \setminus A$.

Corollary. Every S-closed set of a Hausdorff space is closed.

Proposition 5. Let A be an S-closed set of a topological space X. If $G \subseteq A$ and G is regular open in X, then G is S-closed in X.

Proof. Let $\{U_s^- : s \in S\}$ be a family of regular closed sets of X which covers G. Then $\{U_s^- : s \in S\} \cup \{X \setminus G\}$ is a cover of A of regular closed sets. Since A is S-closed in X, there exists a finite subcover $\{U_{s_1}^-, U_{s_2}^-, \ldots, U_{s_n}^-\} \cup \{X \setminus G\}$ for the set A. Hence $\{U_{s_1}^-, U_{s_2}^-, \ldots, U_{s_n}^-\}$ is a finite subcover for G.

2. The Measure on S-Closed Spaces

Lemma 1. Let X be a locally S-closed T_1 space. Then for any S-closed set $A \subsetneq X$ there exists a both closed and open set $U \subsetneq X$ such that $A \subseteq U$ and U is contained in an S-closed set of X.

Proof. For every $x \in A$, choose an open neighborhood V_x of x and an S-closed set W_x of X such that $V_x^- \subset W_x$. Pick a point $p \in X \setminus A$ and a regular open neighborhood U_x of x such that $p \notin U_x$. Let $Y_x = (V_x \cap U_x)^O$. Then Y_x is regular open in X with $p \notin Y_x \subset Y_x^- \subset W_x$. So by Proposition 5, Y_x is S-closed in X. By Proposition 4, Y_x is closed in
Thus \(\{X_x : x \in A\} \) is a family of regular closed sets which covers \(A \). From that \(A \) is S-closed in \(X \) it follows that there exists a finite subcover \(\{Y_{x_i} : i = 1,2,\cdots,n\} \) for \(A \). Then \(U = \bigcup_{i=1}^{n} Y_{x_i} \supseteq A \) is closed, open and S-closed in \(X \).

Let \(X \) be a topological space. Take \(C(X) \) to indicate the family of all real-valued continuous functions on \(X \). And define

\[
C_0(X) = \{f \in C(X) : \text{there exists an S-closed set } A \text{ of } X \text{ such that } f(x) \neq 0 \text{ implies } x \in A\}.
\]

The class of \(F - S \) sets is defined to be the smallest \(\sigma \)-algebra \(B \) of subsets of \(X \) such that functions in \(C_0(X) \) are measurable with respect to \(B \). A measure \(\mu \) is called an \(F - S \) measure on \(X \), if its domain of definition is the \(\sigma \)-algebra \(B \) of \(F - S \) sets, and \(\mu(A) < \infty \) for each S-closed set \(A \) in \(B \).

Lemma 2. If \(X \) is a topological space, then \(C_0(X) \) is a vector lattice.

Proof. It suffices to show that \(\alpha f + \beta g \), \(f \lor g \) and \(f \land g \) belong to \(C_0(X) \), whenever \(f,g \in C_0(X) \) and \(\alpha, \beta \in \mathbb{R} \), the set of all real numbers. Since \(\{x \in X : (\alpha f + \beta g)(x) \neq 0\} \subseteq \{x \in X : f(x) \neq 0\} \cup \{x \in X : g(x) \neq 0\} \). It follows from Proposition 1 that \(\alpha f + \beta g \in C_0(X) \). For \(f \land g = f + g - (f \lor g) \) and \(f \lor g = (f - g) \lor 0 + g \), we only need to prove that if \(f \in C_0(X) \) then \(f \lor 0 \in C_0(X) \). Indeed, \(f \lor 0 \) is continuous and \(\{x : f(x) \neq 0\} \Rightarrow \{x : (f \lor 0)(x) \neq 0\} \). Hence, \(f \in C_0(X) \) implies \(f \lor 0 \in C_0(X) \).
Theorem 1. Let X be a locally S-closed T_I space, I a positive linear functional on the set $C_0(X)$. Then there is an $F-S$ measure μ such that for each $f \in C_0(X)$, $I(f) = \int f \, d\mu$.

Proof. The set $C_0(X)$ is a vector lattice by Lemma 2. Now we show that I is a Daniell integral on $C_0(X)$ (see [5]). To see this end, let $\zeta \in C_0(X)$ and (ζ_n) be an increasing sequence of functions in $C_0(X)$ such that
\[\zeta \leq \lim \zeta_n. \]
We may assume that ζ and each ζ_n are non-negative. Take $K = \{x \in X: \zeta(x) \neq 0\}$. Then K^- is S-closed in X. In fact, since $\zeta \in C_0(X)$, there exists an S-closed set G of X such that $G \supseteq K^-$. Proposition 5 implies that the regular open set K^O is S-closed in X. So, Proposition 4 implies that K^O is closed. That is $K^O = K^-$. So K^- is S-closed in X.

Take a non-negative $g \in C_0(X)$ such that $g(x) = 1$, for each $x \in K^-$. By Lemma 1, this can be done.

For any given $\varepsilon > 0$, the set K^- is covered by regular sets $\{O_n^-: n = 1, 2, \cdots\}$, where $O_n^- = \{x \in X: \zeta(x) - \varepsilon g(x) < \zeta_n(x)\}$. Since K^- is S-closed in X, and O_n^-'s are increasing, there must be an N such that $K^- \subseteq O_N^-$. Hence $\zeta - \varepsilon g < \zeta_N$ on K. Since $\zeta \equiv 0$ outside K, $\zeta - \varepsilon g \leq \zeta_N$ holds everywhere. So
\[I(\zeta) - \varepsilon I(g) \leq I(\zeta_N) \leq \lim I(\zeta_n). \]
Since ε was arbitrary and $I(g) < \infty$, it must be that
\[I(\zeta) \leq \lim I(\zeta_n). \]
Thus I is a Daniell integral.
It follows from [5] Stone Theorem that there is a measure \(\mu \) defined on the class \(B \) of \(F - S \) sets such that for each \(f \) in \(C_0(X) \),
\[
I(f) = \int fd\mu.
\]
It remains only to show that if \(K \) is an \(S \)-closed set in \(B \), then \(\mu(K) < \infty \). In fact, from Lemma 1 there exists \(h \in C_0(X) \) such that \(h(x) = 1 \), for each \(x \in K \), then \(\mu(K) \leq \int hdu = I(h) < \infty \).

Theorem 2. If \(X \) is an \(S \)-closed space and \(I \) a positive linear functional on \(C(X) \), then there is a unique \(F - S \) measure \(\mu \) on \(X \) such that \(I(f) = \int fd\mu \), for each \(f \in C(X) \).

Proof. It follows from the proof of Theorem 1 that it suffices to show that \(\mu \) is unique. Because \(1 \in C(X) \), Theorem 20 in [5] implies the uniqueness.

Theorem 3. Let \(X \) be an \(S \)-closed space. Then to each bounded linear functional \(F \) on \(C(X) \), there corresponds a unique finite signed \(F - S \) measure \(\nu \) on \(X \) such that
\[
F(f) = \int fd\nu,
\]
for each \(f \in C(X) \). Moreover, \(||F|| = ||\nu||(X) \).

Proof. By Proposition 3, \(C(X) \) is a normed linear space with the norm \(|| \cdot || \) defined by \(||f|| = \sup|f(x)| \), for each \(f \in C(X) \).

Let \(F = F_+ - F_- \) be defined as in [5] Proposition 23. Then by Theorem 2, there are finite \(F - S \) measures \(\mu_1 \) and \(\mu_2 \) such that
\[
F_+(f) = \int fd\mu_1 \quad \text{and} \quad F_-(f) = \int fd\mu_2,
\]
for each \(f \in C(X) \).
Set \(\nu = \mu_1 - \mu_2 \); then \(\nu \) is a finite signed \(F-S \) measure, and \(F(f) = \int f \, d\nu \), for each \(f \in C(X) \). Now, for each \(f \in C(X) \), \(|F(f)| \leq \int |f| \, d|\nu| \leq ||f|| \cdot |\nu|(X) \). Hence, \(||F|| \leq |\nu|(X) \). But
\[
|\nu|(X) \leq \mu_1(X) + \mu_2(X)
= F^+(1) + F^-(1) = ||F||.
\]
Thus, \(||F|| = |\nu|(X) \).

To show the uniqueness of \(\nu \), let \(\nu_1 \) and \(\nu_2 \) be two finite signed \(F-S \) measures on \(X \) such that \(\int f \, d\nu_i = F(f), \ i = 1, 2. \)

Then \(\lambda = \nu_1 - \nu_2 \) would be a finite signed \(F-S \) measure on \(X \) such that \(\int f \, d\lambda = 0 \), for each \(f \in C(X) \). Let \(\lambda = \lambda^+ - \lambda^- \) be the Jordan decomposition of \(\lambda \). Then the integration with respect to \(\lambda^+ \) gives the same positive linear functional on \(C(X) \) as that given by \(\lambda^- \); and by Theorem 2, it must be \(\lambda^+ = \lambda^- \). Hence \(\lambda = 0 \) and \(\nu_1 = \nu_2 \).

Theorem 4. Let \(X \) be an \(S \)-closed space. Then to each bounded functional \(F \) on \(C(X) \) and \(0 < p < +\infty \), there corresponds one finite \(F-S \) measure \(U \) on \(X \) such that for each \(f \in C(X) \), \(F(f) = (\int |f|^p \, dU)^{1/p} \) if and only if there exists a unique positive linear functional \(I \) on \(C(X) \) such that \(F^P(f) = I(|f|^p) \), for each \(f \in C(X) \). Moreover, \(U(X) = F^P(1) \).

The proof is straightforward and is omitted.

We conclude this paper with a problem: Let \(X \) be an \(S \)-closed \(T_1 \) space; then the dual of \(C(X) \) is (isometrically isomorphic to) the space of all finite signed \(F-S \) measures on \(X \) with the norm defined by \(||\nu|| = |\nu|(X) \).
References

Northwestern University

Xian, China