A FINITE TO ONE OPEN MAPPING PRESERVES SPAN ZERO

by

MARIA CUERVO AND EDWIN DUDA
A FINITE TO ONE OPEN MAPPING
PRESERVES SPAN ZERO

Maria Cuervo and Edwin Duda

It is shown that span zero is preserved under finite
to one open mappings. 54C10, 54F20

Introduction

The notion of span of a compact metric space and its
natural generalization semispan were defined by A. Lelek
in 1964 and 1977, respectively [6, 7]. It follows from
the definitions that semispan is greater than or equal to
span and both functions are monotone with respect to
closed subsets. It can be shown directly that a nonuni­
coherent continuum or a triod have span greater than zero.
All chainable continua have semispan zero and those con­
tinua without the fixed point property have span greater
than zero. J. F. Davis has shown that span zero and semi­
span zero are equivalent [2]. In [11] I. Rosenholtz has
shown that an open image of a chainable continuum is also
chainable. A natural question is whether open mappings
preserve span zero.

Notations and Definitions

A metric continuum is a compact connected metric
space. We let d represent the distance function and \(\Pi_1 \)
and \(\Pi_2 \) the natural projection mappings of the Cartesian
Product \(X \times X \) onto \(X \). The semispan of a compact metric
space, denoted by \(\sigma_0(X) \), is the least upper bound of all real numbers \(\varepsilon \) such that there is a subcontinuum \(Z \) of \(X \times X \) with the properties that \(\Pi_2(Z) \subseteq \Pi_1(Z) \) and \(d(x,y) > \varepsilon \) for all \((x,y) \in Z\). The definition of span of \(X \), denoted by \(\sigma(X) \), is the same except that we require \(\Pi_2(Z) = \Pi_1(Z) \).

A mapping \(f(X) = Y \) is weakly confluent provided that for each subcontinuum \(K \subseteq Y \), there is a component \(H \) of \(f^{-1}(K) \) such that \(f(H) = K \). A continuum \(Y \) is in class \(W \) provided that for each mapping \(f \) from a continuum onto \(Y \), \(f \) is weakly confluent. A continuum is indecomposable provided it cannot be the union of two proper subcontinua. For \(x \in X \), define \(K_x \) as follows; \(K_x = \cap \{ K, K \text{ is a subcontinuum of } X \text{ and } x \text{ is in the interior of } K \} \). The properties of \(K_x \) for certain continua are developed in [1]. A subcontinuum \(B \) is terminal in the space \(X \) if whenever \(H \) and \(K \) are two subcontinua with \(B \cap H \neq \emptyset \) and \(B \cap K \neq \emptyset \), then \(B \cup H \subseteq B \cup K \) or \(B \cup H \supset B \cup K \).

Preliminary Results

A mapping is finite to one if each point inverse is a finite set.

Lemma 1. Let \(f(X) = Y \) be a finite to one open mapping, where \(X \) and \(Y \) are locally compact separable metric spaces. The set \(D \) of all points \(x \) of \(X \) such that \(f \) is a local homeomorphism at each point of \(f^{-1}f(x) \) is an open dense subset of \(X \).
Proof. Let \(D_n = \{ x | x \in X \text{ and } f^{-1}(f(x)) \text{ has less than or equal to } n \text{ points} \} \). Each \(D_n \) is a closed set by the openness of \(f \). Since \(X = \bigcup_{n=1}^{\infty} D_n \) and \(X \) is a Baire Space some \(D_n \) contains interior points. Let \(n_0 \) be the least integer for which \(D_{n_0} \) has interior points and let \(x \) be an interior point. Each point of \(f^{-1}(f(x)) \) is interior to \(D_{n_0} \) since \(f^{-1}(\text{int} M_{n_0}) \) is an open set. Let \(f^{-1}(f(x)) = \{ x_1, x_2, \ldots, x_{n_0} \} \) and take pairwise disjoint open sets \(U(x_i) \), \(i = 1, 2, \ldots, n_0 \) about each point of \(f^{-1}(f(x)) \) and contained in \(\text{int} M_{n_0} \). Now \(f \mid U(x_i) \), \(i = 1, 2, \ldots, n_0 \) is an open and 1-1 mapping of \(U(x_i) \) onto \(f(U(x_i)) \) and is therefore a homeomorphism. To show \(D \) is dense in \(X \) apply the argument above to an arbitrary non-empty open set \(U \). That is \(U = \bigcup_{n=1}^{\infty} (U \cap D_n) \) and \(U \) as a subspace is a Baire space so there is a least integer \(n_0 \) such that \(U \cap D_{n_0} \) has interior points. See [12], VII, 3.5 for a similar result.

Lemma 2. If \(f(X) = Y \) is a finite to one open mapping, where \(X \) and \(Y \) are locally compact separable metric spaces, and \(B \) is a closed subset of \(X \) such that \(\text{int} f(B) \) is not empty, then \(\text{int} B \) is not empty.

Proof. By the preceding result there is a point \(y_0 \in \text{int} f(B) \) such that \(f \) is a local homeomorphism at
each point of $f^{-1}(y_0)$. Suppose $f^{-1}(y_0) = \{x_1, \ldots, x_{n_0}\}$

and choose pairwise disjoint open sets $U(x_i), i = 1, \ldots, n_0$

so that $W = f(U(x_i)) = f(U(x_j)) \subset \text{int. } f(B)$ for all

$i, j = 1, \ldots, n_0$ and each $f|U(x_i)$ is a homeomorphism of

$U(x_i)$ onto $f(U(x_i))$. We have $W = \bigcup_{i=1}^{n_0} f(B \cap U(x_i))$ and each

$f(B \cap U(x_i))$ is an F_0 set and W as a subspace is a Baire

space so some $f(B \cap U(x_i))$ has interior points. If V is

an open set in $f(B \cap U(x_i))$ then the set U in $B \cap U(x_i)$

which maps onto V is open in X.

Lemma 3. Let X be a hereditarily unicoherent atroidic

metric continuum. For $x \in X$, if K_x has non-empty interior

then K_x is indecomposable or the union of two indecompos­

able continua with non-empty interiors.

Proof. Suppose $K_x = L \cup M$, where L and M are proper

subcontinua. We can assume $L = L - M$ and $M = M - L$. By

the definition of K_x it follows that $x \not\in L - M$ and

$x \not\in M - L$ so $x \in L \cap M$ and furthermore $x \in \text{int.} (L \cup M)$

otherwise the space X contains a triod. Suppose $L = L_1 \cup L_2$, where L_1 and L_2 are proper subcontinua. If

$x \not\in L_1$, then $x \in \text{int.} (L_2 \cup M)$ which contradicts the defini­

tion of K_x so that $x \in L_1 \cap L_2 \cap M_1$ this implies $L_1 \cup L_2 \cup

M$ is a triod and this is not possible hence L and M are

indecomposable with non-empty interiors.

From [3] we have: Theorem 2. If $\sigma_0(X) = \varepsilon > 0$,

there exists an indecomposable continuum $I \subset X$ with
\[\sigma_0(I) = \varepsilon \] and every proper subcontinuum of \(I \) has semispan less than \(\varepsilon \). The space \(X \) in this result must be an atroidic hereditarily unicoherent metric continuum.

Main Result

The following theorem is the main result of this article.

Theorem. Let \(X \) and \(Y \) represent metric continua.

If \(\sigma_0(X) = 0 \) and \(f(X) = Y \) is a finite to one open mapping, then \(\sigma_0(Y) = 0 \).

Proof. \(\sigma_0(X) = 0 \) implies \(X \) is atroidic and hereditarily unicoherent. By [8] \(\sigma_0(X) = 0 \) implies \(X \) is tree-like and by [5] atroidic and tree-like implies \(X \) is in class \(W \). By [9] \(Y \) is hereditarily unicoherent and by [10] \(Y \) is tree-like. The mapping \(f \) takes atroidic continua onto atroidic continua, so by [5], \(Y \) is in class \(W \). By Theorem 2, if \(\sigma_0(Y) = \varepsilon > 0 \), then there exists an indecomposable subcontinuum \(I \) with \(\sigma_0(I) = \varepsilon \) and every proper subcontinuum of \(I \) has semispan less than \(\varepsilon \). Let \(H \) be a component of \(f^{-1}(I) \), then, as is well known, \(f(H) = I \) and \(f/H \) is a finite to one open mapping of \(H \) onto \(I \). For \(x \in H \), \(K_x = \bigcap_{a \in \Gamma} K^a_x \), \(K_x \subseteq H \), \(a \in \Gamma \) and \(x \in \text{int} \ K^a_x \) relative to \(H \). The continuum \(f(K^a_x) \subseteq I \) has interior points so \(f(K^a_x) = I \) since \(I \) is indecomposable. Thus, in this case, we can argue that \(f(K_x) = I \) and since \(f \) is finite to one and open, by Lemma 2 \(\text{int} \ K_x \neq \emptyset \). There are only two possible cases; (i) \(K_x \) is indecomposable, or (ii) \(K_x = K_y \cup K_z \), where \(K_y \) and \(K_z \) have non-empty interior, are indecomposable,
\[\text{int} \ K_y \cap \text{int} \ K_z = \emptyset \text{ and } x \in K_y \cap K_z. \] This means that, since \(f \) is finite to one and open on \(H \), we can consider \(H \) as a finite linear chain of indecomposable continua, i.e., \(H = K_{x_1} \cup K_{x_2} \cup \ldots \cup K_{x_n}, \) where \{int \(K_{x_i} \)\}, \(i = 1, \ldots, n \) is a pairwise disjoint collection and only successive \(K_{x_i} \)'s intersect. The continuum \(H \) is irreducible from a point \(p \in K_{x_1} \) to a point \(q \in K_{x_n}. \) There is a continuum \(Z \subseteq I \times I \) such that for all \((x,y) \in Z, d(x,y) \geq \varepsilon \) and \(\Pi_1(Z) = I = \Pi_2(Z). \) The continuum \(Z \) can be chosen so that it is indecomposable and \(\Pi_1/Z \) and \(\Pi_2/Z \) are irreducible mappings [4]. Let \(C \) be the composant of \(K_{x_1} \) which is accessible from \(K_{x_1} \) and let \(L \) be the composant of \(I \) which contains \(f(C). \) The composant \(L \) may be expressed as, \(L = \bigcup_{i=1}^{\infty} D_i, D_i \subseteq D_{i+1}, i = 1, 2, \ldots \) and each \(D_i \) is a continuum. For each \(i, Z - \Pi_1^{-1}(D_i) \) is open in \(Z \) and connected and dense since \(\Pi_1^{-1}(D_i) \) cannot meet all composants of \(Z. \) Thus \(\bigcap_{i=1}^{\infty} Z - \Pi_1^{-1}(D_i) \cap \bigcap_{i=1}^{\infty} Z - \Pi_2^{-1}(D_i) \neq \emptyset \) by a Baire theorem and hence there exists an \((x,y) \in Z \) with \(x, y \in I - L. \) Since \((f \times f)(K_{x_1} \times K_{x_1}) = I \times I \) there is a point \((a,b) \in K_{x_1} \times K_{x_1} \) with \((f \times f)(a,b) = (x,y) \) and \(a, b \in K_{x_1} - C. \) Let \(B \) be the component of \((f \times f)^{-1}(Z) \) which contains \((a,b). \) We have \(f(\Pi_1(B)) = I \) so \(\Pi_1(B) \) has
interior points and thus cannot be a proper subcontinuum of K_{x_1}. The point $a \in \Pi_1(B)$ and $a \not\in C$ so $\Pi_1(B) \supset K_{x_1}$.

Similarly $\Pi_2(B) \supset K_{x_1}$. Since K_{x_1} is a terminal subcontinuum in H it follows that $\Pi_1(B) \supset \Pi_2(B)$ or $\Pi_1(B) \subset \Pi_2(B)$. Since B does not meet the diagonal of H, we have $\sigma_0(H) > 0$ and consequently $\sigma_0(X) > 0$, which is a contradiction.

References

University of Miami

Coral Gables, Florida 33124