A GENERALIZATION OF SCATTERED SPACES

by

H. Z. Hdeib and C. M. Pareek
A GENERALIZATION OF SCATTERED SPACES

H. Z. Hdeib and C. M. Pareek

1. Introduction

Scattered spaces have been studied by several authors (see [6], [7], [8], [11], [12], [13], [14], [15], [16] and [17]). Recently, in [11], [15] and [17] some generalizations of scattered spaces have been considered and have been extensively studied. Our interest in this topic was stimulated by some questions in [8] and some of the results obtained in [11], [15] and [18].

In this paper, we introduce the concept of ω-scattered spaces as a natural generalization of the concept of scattered spaces. It is proved that in the class of compact Hausdorff spaces the concept of ω-scatteredness of the space coincides with scatteredness. It is noted that ω-scattered need not be scattered in general. Also, the C-scattered spaces introduced in [15] are not comparable with the ω-scattered spaces. We start out by giving a characterization of ω-scattered spaces. Then, a relationship between ω-scatteredness of the space and scatteredness of some extensions is established. This relationship helps us to prove that Lindelöf P^*-spaces are functionally countable and Lindelöf ω-scattered spaces are functionally countable. Later on, we show that for a compact Hausdorff space X, (i) X is scattered, (ii) X is ω-scattered and (iii) X is functionally countable are
equivalent. Finally, some product theorem for a class of Lindelöf spaces have been established, and it is proved that a T_3, first countable, paracompact, and ω-scattered space is metrizable. The last result improves a result of Wicke and Worrell in [18].

2. Preliminaries

In this section some essential definitions are introduced, notations are explained and some basic facts which are essential in obtaining the main results are stated.

Throughout this paper X denotes a T_1 space. The symbol ω and c denote the cardinal number of integers and reals respectively. The cardinality of any set A is denoted by $|A|$.

Definition 2.1 [9]. A function $f: X \to Y$ is called barely continuous if, for every non-empty closed $A \subseteq X$, the restriction $f|_A$ has at least one point of continuity.

Definition 2.2 [8]. A space X is called functionally countable if every continuous real valued function on X has a countable image.

Definition 2.3 [8]. Given a topological space (X,T), $b(X,T)$ will represent the set X with the topology generated by the G_δ-sets of (X,T). Sometimes T is not mentioned and bX is written instead of $b(X,T)$.

Definition 2.4 [3]. A space X is called a P-space if the intersection of countably many open sets is open.
Now, we list some known results which will be helpful in obtaining the main results.

Theorem 2.5 [2]. If \(X\) is a regular, Lindelöf, scattered space, then \(bX\) is Lindelöf.

Theorem 2.6 [8]. If \(X\) is a regular, Lindelöf, P-space, then \(X\) is a functionally countable.

Theorem 2.7 [9]. If \(f\) is a barely continuous function from a hereditarily Lindelöf space \(X\) onto a space \(Y\), then \(Y\) is Lindelöf.

Theorem 2.8. If \(X\) is a \(T_2\), Lindelof, P-space, then \(X\) is normal.

3. \(\omega\)-Scattered Spaces

A space \(X\) is called \(\omega\)-scattered if every non-empty subset \(A\) of \(X\) has a point \(x\) and an open neighborhood \(U_x\) of \(x\) in \(X\) such that \(|U_x \cap A| \leq \omega\).

Every scattered space is \(\omega\)-scattered but the converse is not true, because every countable space is \(\omega\)-scattered, while the (countable) set of rationals with the usual topology is not scattered.

A space \(X\) is \(C\)-scattered [15], if every non-empty closed subset \(A\) of \(X\) has a point with a compact neighborhood in \(A\). The following remark shows that \(\omega\)-scattered spaces and \(C\)-scattered space are not comparable.
Remark 3.1. The set of rationals \mathbb{Q} with usual topology is ω-scattered. However, it is not C-scattered since no point of \mathbb{Q} has a compact neighborhood.

The set of reals \mathbb{R} with usual topology is C-scattered (in fact, it is locally compact) but not ω-scattered.

A point x of a space X is called a condensation point of the set $A \subseteq X$ if every neighborhood of the point x contains an uncountable subset of A.

Definition 3.2 [4]. A subset A of a space X is called ω-closed if it contains all of its condensation points. The complement of an ω-closed set is called ω-open.

Observe that $A \subseteq X$ is ω-open iff for each x in A there is an open set U in X containing x such that $|U - A| < \omega$.

The next theorem characterizes ω-scattered spaces.

Theorem 3.3. For any space X the following are equivalent:

(i) X is ω-scattered.

(ii) Every nonempty ω-closed subset A of X contains a point x which is not a condensation point.

(iii) There exists a well ordering \leq of X such that for each $x \in X$, the set $A_x = \{y \in X \mid y \leq x\}$ has the property that for each $y \in A_x$ there exists an open set
U_y containing y such that \(|U_y \cap (X - A_x)| \leq \omega, \text{ i.e.,}
for each x \in X, the set A_x is \omega-open.

Proof. (i) + (ii) is obvious.

(ii) + (iii). Let X be a space in which every nonempty closed subset has a point which is not a condensation point. Then X has a point x_1 which is not a condensation point. Now, X - {x_1} is \omega-closed in X and therefore X - {x_1} has a point x_2 which is not a condensation point. Then X - {x_1, x_2} is \omega-closed. Finally, using transfinite induction one can complete the proof.

(iii) + (i). Let A be any nonempty subset of X. Since X is well ordered, A has a first element, say x_0. Now, by the hypothesis A_{x_0} = \{y \in X | y \leq x_0\} is \omega-open. Hence, X is \omega-scattered.

Definition 3.4 [5]. A function f: X \rightarrow Y is called \omega-continuous at x \in X if for every open set V containing f(x) there is an \omega-open set U containing x such that f(U) \subseteq V. If f is \omega-continuous at each point of X, then f is \omega-continuous on X. A function f: X \rightarrow Y is called barely \omega-continuous if for every non-empty closed subset A of X, f|_A has at least one point of \omega-continuity.

The following theorem provides a basic tool to obtain some of the main results.

Theorem 3.5. If (X,T) is a topological space and T_\omega is the topology on X having as a base \{U - C | U \in T and
C is finite or countable), then for any $A \subset X$ the following holds:

(i) A is ω-open if and only if A is open in (X, T_ω), i.e., $A \in T_\omega$.

(ii) A is ω-closed if and only if A is closed in (X, T_ω), i.e., $X - A \in T_\omega$.

(iii) $f: (X, T) \to Y$ is ω-continuous if and only if $f: (X, T_\omega) \to Y$ is continuous.

(iv) $f: (X, T) \to Y$ is barely ω-continuous if and only if $f: (X, T_\omega) \to Y$ is barely continuous.

The proof is straightforward.

Theorem 3.6. If (X, T) is Lindelöf, then (X, T_ω) is Lindelöf.

The proof is straightforward, therefore left for the reader.

Theorem 3.7. If $f: (X, T) \to Y$ is barely ω-continuous and (X, T) is hereditarily Lindelöf, then Y is Lindelöf.

Proof. It follows from theorem 3.6 that (X, T_ω) is hereditarily Lindelöf. By theorem 3.5, $f: (X, T_\omega) \to Y$ is barely continuous. Hence by theorem 2.7, Y is Lindelöf.

Theorem 3.8. (X, T) is ω-scattered if and only if (X, T_ω) is scattered.

The proof is obvious by the Theorem 3.5.
Definition 3.9 [4]. A space X is called a P^*-space if the intersection of countably many open sets is ω-open.

Theorem 3.10. If (X,T) is a T_2, Lindelöf P^*-space, then (X,T) is functionally countable.

Proof. Suppose (X,T) is a Lindelöf P^*-space, then by Theorem 3.6, (X,T_ω) is Lindelöf. Now, (X,T_ω) is a T_2, Lindelöf P-space. Thus, by Theorem 2.8, (X,T_ω) is normal. Hence, by Theorem 2.6, (X,T_ω) is functionally countable. Let $f: (X,T_\omega) \to (X,T)$ be the identity function. Then, f is continuous. Since (X,T_ω) is functionally countable, it is easy to see that (X,T) is functionally countable.

Theorem 3.11. (X,T) is ω-scattered if and only if every function f on (X,T) is barely ω-continuous.

Proof. Suppose (X,T) is ω-scattered. Let $f: (X,T) \to Y$ be a function from (X,T) onto an arbitrary space Y. Let A be any ω-closed subset of X. Then, A contains a point x_0 which is not a condensation point by Theorem 3.3. Now, it is easy to conclude that $f|_A$ is ω-continuous at x_0. Hence, f is barely ω-continuous.

For the converse, suppose that any function f from (X,T) onto any space is barely ω-continuous. So, in particular the identity function i_X from (X,T) onto X with discrete topology is barely ω-continuous. Let A be any non-empty ω-closed subset of X. Then, $i_X|_A$ is ω-continuous at some y in A, i.e., there is an ω-open set U such that $U \cap A = i_X^{-1}(i_X(y)) = \{y\}$. Hence, (X,T_ω) is scattered. Therefore, by Theorem 3.8 (X,T) is ω-scattered.
Notation. Let X be a topological space. Let $X^{(0)} = X$. Let $X^{(1)}$ denote the collection of condensation points of X. With $X^{(\alpha)}$ for an ordinal α, let $X^{(\alpha+1)} = (X^{(\alpha)})^{(1)}$. If α is a limit ordinal, let $X^{(\alpha)} = \bigcap_{\beta<\alpha} X^{(\beta)}$.

It is easy to see that X is ω-scattered if and only if $X^{(\alpha)} = \emptyset$ for some α.

Theorem 3.12. If X is a Lindelöf ω-scattered space then bX is Lindelöf.

Proof. Let α be an ordinal such that $X^{(\alpha)} = \emptyset$. α exists because X is ω-scattered. If $\alpha = 1$, then it is easy to see that X is countable because X is Lindelöf. Hence the result follows. Suppose we have proved the result for all $\beta < \alpha$. That is, if $\beta < \alpha$ and $X^{(\beta)} = \emptyset$, then bX is Lindelöf.

Case 1. There is $\beta < \alpha$ such that $\beta + 1 = \alpha$ and $X^{(\alpha)} = \emptyset$. It is easy to see that $X^{(\beta)}$ is a countable closed subset of X. Consider the open cover $U = \{X - X^{(\beta)}\} \cup \{U_x | x \in X^{(\beta)}\}$ where $|U_x \cap X^{(\beta)}| \leq \omega$ for each x and U_x is open in X containing x. Since X is regular, there exists an open cover H of X such that the closure of members of H refines U. X is Lindelöf implies H has a countable subcover V. Now if $V \in V$ and $\overline{V} \subseteq X - X^{(\beta)}$ then $\overline{V^{(\beta)}} = \emptyset$, i.e. $b\overline{V}$ is Lindelöf by the inductive assumption. Let $V' = \{\overline{V} | V \in V', \text{ and } \overline{V} \subseteq (X - X^{(\beta)})\}$. Since $X^{(\beta)}$ is countable we have $bX^{(\beta)}$ is Lindelöf. Now $M = \{X^{(\beta)}\} \cup V'$ is countable closed cover
of X such that for each $M \in M$ we have bM is Lindelöf.
Hence bX is Lindelöf.

Case 2. $\chi^{(\alpha)} = \bigcap_{\beta<\alpha} \chi^{(\beta)} = \emptyset$.

Consider the cover $U = \{X - X^{(\beta)} | \beta < \alpha\}$ of X. Since X
is regular, there exists an open cover H of X such that
the closures of members of H refines U. X is Lindelöf
implies H has a countable subcover V. Then for each
$V \in V$, \overline{V} is in some $X - X^{(\beta)}$ for $\beta < \alpha$. Hence, for each
$V \in V$, $\overline{V}^{(\beta)} = \emptyset$. By the inductive assumption, for each
$V \in V$, $b\overline{V}$ is Lindelöf. Therefore, bX is Lindelöf.

Theorem 3.13. (i) If (X,T) is a regular, Lindelöf, ω-scattered space, then (X,T) is functionally countable.
(ii) If X is a regular, Lindelöf, ω-scattered space
such that each point of X is a G_δ-set, then $|X| \leq \omega$.

Proof. (i) It follows from Theorem 3.12 that $b(X,T)$ is Lindelöf. Also $b(X,T)$ is a T_2 P-space. Hence by
Theorem 2.6 and 2.8, $b(X,T)$ is functionally countable.
Let $f: b(X,T) \to (X,T)$ be the identity function. Then, f
is continuous. Since $b(X,T)$ is functionally countable,
(X,T) is functionally countable.

The proof of (ii) follows easily from the Theorem 3.12.

Theorem 3.14. If (X,T) is hereditarily Lindelöf ω-scattered space, then (X,T) is countable.

Proof. Suppose (X,T) is hereditarily Lindelöf ω-scattered space. Let i_X be the identity function from
(X,T) into X with discrete topology. Then i_X is barely $ω$-continuous. Hence, by Theorem 3.7, $i_X(X)$ is Lindelöf. Therefore, X is countable.

In [8], the following theorem is attributed to Rudin [13] and Pelczynski and Semadeni [12].

Theorem 3.15. For a compact Hausdorff space the following are equivalent:

(i) X is scattered.

(iii) X is functionally countable.

It is natural to ask whether Theorem 3.15 remains true if we replace scattered by $ω$-scattered. The following theorem gives an affirmative answer to this question.

Theorem 3.16. For a compact Hausdorff space X the following are equivalent:

(i) X is scattered.

(ii) X is $ω$-scattered.

(iii) X is functionally countable.

Proof. (i) $→$ (ii) is obvious

(ii) $→$ (iii). It follows from Theorem 3.13.

(iii) $→$ (i) follows from Theorem 3.15.

4. Product of Lindelöf $ω$-Scattered Spaces

Theorem 4.1. If bX and Y are Lindelöf spaces, then $X \times Y$ is Lindelöf.

The proof that $bX \times Y$ is Lindelöf follows an argument similar to the one used in ([6], Vol. II, page 16).
to prove that the product of two compact spaces is compact. Since \(X \times Y \)'s topology is weaker than \(bX \times Y \)'s, \(X \times Y \) is Lindelöf.

Theorem 4.2. If \(X \) is a regular, Lindelöf, \(\omega \)-scattered space and \(Y \) is any Lindelöf space, then \(X \times Y \) is Lindelöf.

Proof. It follows from Theorem 3.12 that \(bX \) is Lindelöf. Hence, by Theorem 4.1, \(X \times Y \) is Lindelöf.

Corollary 4.3. A finite product of Lindelöf \(\omega \)-scattered spaces is Lindelöf.

In [10], it was shown that a countable product of Lindelöf \(\omega \)-spaces is Lindelöf. Using this result we can obtain the following theorem.

Theorem 4.4. A countable product of regular, Lindelöf, \(\omega \)-scattered spaces is Lindelöf.

Proof. Let \(\{X_n | n \leq \omega\} \) be a family of Lindelöf \(\omega \)-scattered spaces. Then, by Theorem 3.12, each \(bX_n \) is a Lindelöf. Hence \(\prod_{n\leq \omega} bX_n \) is Lindelöf. Since \(\prod_{n\leq \omega} bX_n \) maps continuously onto \(\prod_{n\leq \omega} X_n \), we obtain that \(\prod_{n\leq \omega} X_n \) is Lindelöf.

In [7], Kunen proved that if each \(X_n \) is a Hausdorff compact scattered space, then the box product \(\Box_{n\leq \omega} X_n \) is c-Lindelöf.

In view of Theorem 3.16, we can state Kunen's result as follows:
Theorem 4.5. If each \(X_n \) is a Hausdorff compact, \(\omega \)-scattered space, then the box product \(n \leq \omega \)
\(n \times \prod_{<\omega} X_n \) is \(c \)-Lindelöf.

5. Metrizability of \(\omega \)-Scattered Spaces

In [18], it was shown that every regular, first countable, paracompact, scattered space is metrizable. In this section, we obtain a generalization of this result using \(\omega \)-scattered spaces.

Definition 5.1 [11]. A space \(X \) is called \(\sigma \)-discrete if it is a union of countably many closed discrete subspaces.

Definition 5.2. A space \(X \) is called \(F_\sigma \)-screenable if every open cover of \(X \) has a \(\sigma \)-discrete closed refinement.

Definition 5.3. A subset \(Y \) of a space \(X \) is called locally countable if for each \(y \in Y \) there is an open neighborhood \(U_y \) in \(X \) containing \(y \) such that \(|U_y \cap Y| \leq \omega \).

Lemma 5.4. If \(X \) is \(F_\sigma \)-screenable (or metalindelöf) and locally countable, then \(X \) is \(\sigma \)-discrete.

Proof. We prove the lemma when \(X \) is \(F_\sigma \)-screenable and locally countable. The other case follows similarly. By the assumptions, \(X \) has an open cover \(U = \{U_\beta \mid \beta \in \Gamma \} \) such that \(|U_\beta| \leq \omega \) for each \(\beta \in \Gamma \). \(X \) is \(F_\sigma \)-screenable implies there exists a \(\sigma \)-discrete closed refinement
\[
F = \bigcup_{i=1}^{\infty} F_i \text{ where } F_i = \{F_i^\alpha \mid \alpha \in \Lambda_i \} \text{ for } i \in \mathbb{N}.
\]
Since
each U_β is countable and F refines U, we see that
$|F_{i\alpha}| \leq \omega$ for each i and α. Hence $F_{i\alpha}$ is σ-discrete for each i and α. Let $F_{i\alpha} = \{x_{ij\alpha} | j \in \mathbb{N}\}$ and $G_{ij} = \{x_{ij\alpha} | \alpha \in \Lambda_i\}$. Then it is obvious that G_{ij} is discrete, closed and $X = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} G_{ij}$. Therefore, X is σ-discrete.

Lemma 5.5. If X is F_σ-screenable and ω-scattered, then X is σ-discrete.

Proof. Let α be an ordinal such that $X^{(\alpha)} = \phi$. α exists because X is ω-scattered. If $\alpha = 1$, then it is easy to see that X is locally countable and by Lemma 5.4 the result follows. Suppose we have proved the result for all $\beta < \alpha$ and $X^{(\beta)} = \phi$, then X is σ-discrete.

Case 1. There is $\beta < \alpha$ such that $\alpha = \beta + 1$ and $X^{(\alpha)} = \phi$. It is easy to see that $X^{(\beta)}$ is a closed locally countable subset of X. Consider the open cover $U = \{X - X^{(\beta)}\} \cup \{U_x | x \in X^{(\beta)}\}$ where $|U_x \cap X^{(\beta)}| \leq \omega$ for each x and U_x is open in X containing x. X is F_σ-screenable implies U has a σ-discrete closed refinement $V = \bigcup_{n=1}^{\infty} V_n$ where $V_n = \{V_{n\lambda} | \lambda \in \Lambda_n\}$. Note that each $V_{n\lambda}$ is F_σ-screenable and ω-scattered. Also if $V_{n\lambda} \subseteq X - X^{(\beta)}$ then $V_{n\lambda}^{(\beta)} = \phi$, i.e. $V_{n\lambda}$ is σ-discrete by the inductive assumption. Let $V' = \{V | V \in V, \text{ and } V \subseteq X - X^{(\beta)}\}$, then V' covers $X - X^{(\beta)}$. Since $X^{(\beta)}$ is a closed subset of X, it follows by Lemma 5.4 that $X^{(\beta)}$ is σ-discrete. Now $W = \{X^{(\beta)}\} \cup V'$ is a σ-discrete closed cover of X with
each member is \(\sigma\)-discrete. Hence, it is easy to conclude that \(X\) is \(\sigma\)-discrete.

\textit{Case 2.} \(X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)} = \emptyset.\)

Consider the cover \(U = \{X - X^{(\beta)} \mid \beta < \alpha\}\) of \(X\). Let \(V\) be a \(\sigma\)-discrete closed refinement of \(U\). Then, each \(V \in V\) is in some \(X - X^{(\beta)}\) for \(\beta < \alpha\). Hence \(V^{(\beta)} = \emptyset\) for each \(V \in V\). Therefore, for each \(V \in V\), \(V\) is \(\sigma\)-discrete by the inductive assumption. Hence, it is easy to conclude that \(X\) is \(\sigma\)-discrete.

\textbf{Theorem 5.6.} \textit{If \(X\) is a regular, first countable, paracompact, \(\omega\)-scattered space, then \(X\) is metrizable.}

\textbf{Proof.} It follows from Lemma 5.5 that \(X\) is \(\sigma\)-discrete. Now, it is well known that a \(\sigma\)-discrete first countable space is developable. Thus \(X\) is developable. Therefore by Bing's metrization theorem (see [1], p. 408), \(X\) is metrizable.

\textbf{Corollary 5.7 [18].} \textit{If \(X\) is a regular, first countable, scattered, paracompact space, then \(X\) is metrizable.}

Finally, we suggest, the following questions.

\textit{Question 5.8.} Which spaces \((X,T)\) have \((X,T_\omega)\) paracompact?

\textit{Question 5.9.} When are regular Lindelöf, \(\omega\)-scattered spaces, scattered?
References

[12] A. Pelczynski and Z. Semadeni, Spaces of continuous functions (III) (Spaces C(Ω) for Ω without perfect sets), Studia Mathematica 18 (1959), 211-222.

Kuwait University

13060 Safat, Kuwait