SPACES OF CONTINUOUS LINEAR FUNCTIONALS: SOMETHING OLD AND SOMETHING NEW

by

S. Kundu
SPACES OF CONTINUOUS LINEAR FUNCTIONALS: SOMETHING OLD AND SOMETHING NEW

S. Kundu

Let $C(X)$ denote the set of all continuous real-valued functions on a completely regular Hausdorff space X and $C^*(X)$ be the set of bounded functions in $C(X)$. Let us denote by $C_k(X)$ (respectively by $C_p(X)$) the set $C(X)$ topologized with the compact-open (respectively the point-open) topology. Both $C_k(X)$ and $C_p(X)$ are locally convex spaces. The locally convex compact-open topology on $C(X)$ is generated by the collection of seminorms $\{p_K: K$ is a compact subset of $X\}$ where $p_K(f) = \sup \{|f(x)|: x \in K\}$ for $f \in C(X)$. Similarly the locally convex point-open topology on $C(X)$ is generated by the collection of seminorms $\{p_F: F$ is a finite subset of $X\}$ where $p_F(f) = \sup \{|f(x)|: x \in F\}$. Let $K(X) = \{K \subseteq X: K$ is a compact subset of $X\}$ and $F(X) = \{F \subseteq X: F$ is a finite subset of $X\}$.

Basic open sets in $C_k(X)$ (respectively in $C_p(X)$) look like $\langle f, A, \varepsilon \rangle = \{g \in C(X): |f(x) - g(x)| < \varepsilon$ for all $x \in A\}$ where $f \in C(X)$, $A \in K(X)$ (respectively $A \in F(X)$) and $\varepsilon > 0$.

Let $A_k(X)$ (respectively $A_p(X)$) be the set of all continuous linear functionals (real-valued functions) on $C_k^*(X)$ (on $C_p^*(X)$ respectively). Note since $C_k^*(X)$ (respectively $C_p^*(X)$) is a dense linear subspace of the
locally convex space $C_k(X)$ (respectively $C_p(X)$), the set of all continuous linear functionals on $C_{k}^{*}(X)$ (respectively $C_{p}^{*}(X)$) equals the set of all continuous linear functionals on $C_k(X)$ (respectively on $C_p(X)$). In [8], a normed linear space whose underlying set is $\Lambda_k(X)$ has been studied in detail. In [8], the notation $\Lambda(X)$ has been used in place of $\Lambda_k(X)$. A necessary condition for this normed linear space $\Lambda_k(X)$ to be complete is that $C(X) = C^{*}(X)$, that is, every real-valued continuous function on X must be bounded. In this paper, we want to put the problem of completeness of $\Lambda_k(X)$ in a proper perspective and we show that the problem of completeness of $\Lambda_k(X)$ is essentially a problem of finding a suitable topology on $C^{*}(X)$. Because of the discussion in this paragraph, from now on, we will be interested only in $C^{*}(X)$. We want to answer the problem of completeness of $\Lambda_k(X)$ in a more general setting. For this purpose, we first define a new topology on $C^{*}(X)$ and we will see that the point-open, compact-open and sup-norm topologies on $C^{*}(X)$ are all special cases of this topology.

1. A New Topology on $C^{*}(X)$

Let α be a collection of subsets of X which satisfies the following two conditions: (i) each member of α is C^{*}-embedded and (ii) if $A, B \in \alpha$, then there exists $C \in \alpha$ such that $A \cup B \subseteq C$.

For each $A \in \alpha$, define a seminorm p_A on $C^{*}(X)$ as follows. For $f \in C^{*}(X)$, $p_A(f) = \sup \{|f(x)| : x \in A\}$.
Consider the locally convex topology on $C^*(X)$ generated by the collection of seminorms $\{p_A: A \in \alpha\}$. Because of (ii), for each $f \in C^*(X)$, $f + U = \{f + V: V \in U\}$ is a neighborhood base at f where $U = \{V_{p_A, \epsilon}: A \in \alpha, \epsilon > 0\}$.

We call this new locally convex topology on $C^*(X)$ α-topology and the corresponding topological space we denote by $C^*_\alpha(X)$. Note when $\alpha = K(X)$ or $F(X)$, we get compact-open or point-open topology on $C^*(X)$ respectively.

The supremum norm on $C^*(X)$ is defined as $\|f\|_\infty = \sup \{|f(x)|: x \in X\}$ for $f \in C^*(X)$. This supremum norm generates a finer topology than the α-topology on $C^*(X)$. We denote this normed linear space by $C^*_\alpha(X)$. If α contains X, then $C^*_\alpha(X) = C^*(X)$; and if, in addition, we assume the members of α to be closed, then $C^*_\alpha(X) = C^*_\infty(X)$ only if α contains X. (see [7], page 7).

Let $\Lambda^\alpha_\infty(X)$ be the set of all continuous linear functionals (real-valued) on $C^*_\alpha(X)$ and let $\Lambda^\alpha_\infty(X)$ be the set of all continuous linear functionals (real-valued) on $C^*_\infty(X)$. Since the sup-norm topology on $C^*(X)$ is finer than the α-topology on it, $\Lambda^\alpha_\infty(X) \subset \Lambda^\alpha_\infty(X)$. Now $\Lambda^\alpha_\infty(X)$ is a normed linear space with the usual conjugate norm, that is, given $\lambda \in \Lambda^\alpha_\infty(X)$, we have a norm $\|\lambda\|_\ast = \sup \{|\lambda(f)|: f \in C^*(X), \|f\|_\infty \leq 1\}$ where $\|\cdot\|_\ast$ is the sup-norm on $C^*(X)$. Consequently we can assign this $\|\cdot\|_\ast$-norm on $\Lambda^\alpha_\infty(X)$ to make it a normed linear space $(\Lambda^\alpha_\infty(X), \|\cdot\|_\ast)$.

Note $\Lambda^\alpha_\infty(X)$ is actually a particular case of $\Lambda^\alpha_\infty(X)$. Here we also mention another particular $\Lambda^\alpha_\infty(X)$. Let X be
a normal Hausdorff space and \(\sigma = \{\text{cl}_X A : A \text{ is a }\sigma\text{-compact subset of } X\}\). Note that \(\sigma\) is closed under finite union because \(\bigcup_{n=1}^k \text{cl}_X A_n = \text{cl}_X \bigcup_{n=1}^k A_n\). We denote the corresponding \(\Lambda_\sigma(X)\) by \(\Lambda_\sigma(X)\). While considering \(\Lambda_\sigma(X)\), we will always assume \(X\) to be a normal Hausdorff space.

2. Basic Properties of \(\Lambda_\alpha(X)\)

Let \(\Lambda_\alpha^+(X) = \{\lambda \in \Lambda_\alpha(X) : \lambda \geq 0\}\) where \(\lambda \geq 0\) provided that \(\lambda(f) \geq 0\) for each \(f \in C^*(X)\) such that \(f \geq 0\). If \(\lambda \in \Lambda_\alpha(X)\) and \(A\) is a subset of \(X\), then \(\lambda\) is said to be supported on \(A\) provided that whenever \(f \in C^*(X)\) with \(f|_A = 0\), then \(\lambda(f) = 0\). Since \(\lambda\) is linear, this is equivalent to saying that whenever \(f, g \in C^*(X)\) with \(f|_A = g|_A\), then \(\lambda(f) = \lambda(g)\).

The next two lemmas can be proved in manners similar to Lemmas 1.1 and 1.2 in [8].

Lemma 2.1. For each \(\lambda \in \Lambda_\alpha(X)\), there exists an element \(A\) in \(\sigma\) such that \(\lambda\) is supported on \(A\). Conversely, if \(\lambda\) is a positive linear functional on \(C^*(X)\) which is supported on an element of \(\sigma\), then \(\lambda \in \Lambda_\alpha^+(X)\).

Lemma 2.2. Let \(A\) be a closed subset of \(X\), let \(F \in \sigma\) and let \(\lambda \in \Lambda_\alpha(X)\). If \(\lambda\) is supported on each of \(A\) and \(F\), then \(\lambda\) is supported on \(A \cap F\).

Now on \(\Lambda_\alpha^+(X)\) we give a topology induced by the metric \(d_*(\lambda, \mu) = \|\lambda - \mu\|_*\) for \(\lambda, \mu \in \Lambda_\alpha^+(X)\).
Theorem 2.3. \((\Lambda^+\alpha(X), d_\star)\) is a closed subspace of
\((\Lambda\alpha(X), \|\cdot\|_\star)\).

Proof. Let \(\lambda \in \Lambda\alpha(X) \setminus \Lambda^+\alpha(X)\). Then there exists a
g \in \mathcal{C}(X)\) such that \(g \geq 0\) and \(\lambda(g) < 0\). Let \(r\) be a posi­
tive number such that \(||rg||_\omega < 1\). Define \(\varepsilon = -\frac{r}{2}\lambda(g)\). Now
suppose \(u \in \Lambda\alpha(X)\) is such that \(||u - \lambda||_\star < \varepsilon\). Then
\(|u(rg) - \lambda(rg)| < \varepsilon\) so that \(u(rg) - \lambda(rg) < \frac{\varepsilon}{r} = -\frac{1}{2}\lambda(g)\).
Therefore \(u(g) < \frac{1}{2}\lambda(g) < 0\) so that \(u \in \Lambda\alpha(X) \setminus \Lambda^+\alpha(X)\).

3. The completeness of \(\Lambda^\alpha(X)\) and \(\Lambda\alpha(X)\)

The space \(\Lambda^\alpha(X)\) is a metric space with the metric \(d_\star\).
This space is complete provided that if a sequence in
\(\Lambda^\alpha(X)\) is a Cauchy sequence with respect to \(d_\star\), then it
converges. Likewise the normed linear space \(\Lambda\alpha(X)\) is
complete if it is complete with respect to its norm \(\|\cdot\|_\star\),
that is, if it is a Banach space.

We have studied the completeness of \(\Lambda^\kappa(X)\) and \(\Lambda^\alpha(X)\)
in [8]. We already know that \(\Lambda\omega(X)\), being the conjugate
space of a normed linear space, is always complete.

To establish that the completeness of \(\Lambda^\alpha(X)\) is
equivalent to the completeness of \(\Lambda\alpha(X)\), we need the fol­
lowing theorem which can be proved like Theorem 2.2 in [8].

Theorem 3.1. Each \(\lambda \in \Lambda\alpha(X)\) can be written as
\(\lambda = \lambda^+ - \lambda^-\) where \(\lambda^+\) and \(\lambda^-\) are members of \(\Lambda^\alpha(X)\). Furthermore, if \(\lambda, \mu \in \Lambda\alpha(X)\), then
\(\|\lambda^+ - \mu^+\|_\star \leq \|\lambda - \mu\|_\star\) and
\(\|\lambda^- - \mu^-\|_\star \leq \|\lambda - \mu\|_\star\).
Theorem 3.2. The metric space $\Lambda^+_\alpha(X)$ is complete if and only if the normed linear space $\Lambda^+_\alpha(X)$ is complete.

Proof. Use Theorems 3.1 and 2.3.

Because of Theorem 3.2, each of the following theorems about $\Lambda^+_\alpha(X)$ is also true for $\Lambda^+_\alpha(X)$.

Theorem 3.3. Suppose X is infinite and $F(X) \subseteq \alpha$. Now if $\Lambda^+_\alpha(X)$ is complete, then every countable subset of X is contained in some member of α.

Proof. Let $A = \{x_n : n \in \mathbb{N}\}$ be any countable subset of X. For each $m \in \mathbb{N}$, define $\lambda_m : C^*_\alpha(X) \rightarrow \mathbb{R}$ as follows. For each $f \in C^*_\alpha(X)$, take $\lambda_m(f) = \sum_{n=1}^{m} \frac{1}{2^n} f(x_n)$. Each λ_m is a positive linear functional on $C^*_\alpha(X)$ supported on the finite set $\{x_1, \ldots, x_m\}$. Then by Lemma 2.1, λ_m is continuous. Now for each k and m with $k < m$, $d_\alpha(\lambda_k, \lambda_m) = \sum_{n=k+1}^{m} \frac{1}{2^n}$. Therefore (λ_m) is a Cauchy sequence in $\Lambda^+_\alpha(X)$. Since $\Lambda^+_\alpha(X)$ is complete, the (λ_m) converges to some λ in $\Lambda^+_\alpha(X)$. Also $\lambda_m + \lambda$ implies $\lambda(f) = \lim_{m \to \infty} \lambda_m(f) = \sum_{n=1}^{\infty} \frac{1}{2^n} f(x_n)$ for all $f \in C^*_\alpha(X)$.

Now suppose λ has a support Y which belongs to α. We show that $A \subseteq Y$. Suppose not, then there is some m such that $x_m \notin Y$. Since X is completely regular, there is some continuous function f on X with values in the unit interval I such that $f(x_m) = 1$ and $f(Y) = \{0\}$. Since λ is supported on Y, $\lambda(f) = 0$. But $\lambda(f) = \sum_{n=1}^{\infty} \frac{1}{2^n} f(x_n) \geq \frac{1}{2^m} f(x_m) = \frac{1}{2^m} > 0$. With this contradiction, it follows that $A \subseteq Y$.

Corollary 3.4. If X is infinite, then $\Lambda^+_p(X)$ and $\Lambda^+_p(X)$ are not complete.
Theorem 3.5. If the closure of each countable union of elements of \(\alpha \) belongs to \(\Lambda_\alpha^+(X) \) is complete.

Proof. Let \((\lambda_n) \) be a Cauchy sequence in \(\Lambda_\alpha^+(X) \). Consider \(\Lambda_\alpha^+(X) \) as a subspace of the complete metric space \(\Lambda_\alpha^+(X) \). Then \((\lambda_n) \) is a Cauchy sequence in \(\Lambda_\alpha^+(X) \) and hence converges to some \(\lambda \) in \(\Lambda_\alpha^+(X) \). Suppose each \(\lambda_n \) is supported on \(A_n \) where \(A_n \in \alpha \). We show that \(\lambda \) is supported on \(A = \text{cl}_X(\bigcup_{n=1}^{\infty} A_n) \). Let \(f \in C^*(X) \) with \(f|_A = 0 \). Since each \(\lambda_n \) is supported on \(A_n \subseteq A \), then each \(\lambda_n(f) = 0 \) and consequently \(\lambda(f) = \lim_{n \to \infty} \lambda_n(f) = 0 \). Therefore \(\lambda \) has support \(A \). But by hypothesis \(A \in \alpha \). Hence by Lemma 2.1 \(\lambda \in \Lambda_\alpha^+(X) \). So \(\Lambda_\alpha^+(X) \) is complete.

Corollary 3.6. Suppose \(X \) is a normal Hausdorff space. Then \(\Lambda_\alpha^+(X) \) is always complete.

Proof. Suppose for each \(n \), \(A_n \) is a \(\sigma \)-compact subset of \(X \). Then \(\text{cl}_X(\bigcup_{n=1}^{\infty} \text{cl}_X A_n) = \text{cl}_X(\bigcup_{n=1}^{\infty} A_n) \in \sigma \).

4. Measure Theoretic-Counterparts

In this section, we will talk about the measure-theoretic counterparts of \(\Lambda_\alpha(X) \) and \(\Lambda_\infty(X) \) with some extra conditions on \(\alpha \) and \(X \). So now we introduce some ideas from measure theory.

The algebra generated by the closed sets of \(X \) are denoted by \(A_C \) while the \(\sigma \)-algebra they generate is denoted by \(\mathcal{B} \), called the Borel sets.

For us a finitely additive measure (also called signed measure) on \(A_C \) is a real-valued function defined
on A_c satisfying the following two properties (i) $\mu(\emptyset) = 0$; (ii) $\mu(A \cup B) = \mu(A) + \mu(B)$ if $A, B \in A_c$ and $A \cap B = \emptyset$.

A finitely additive measure μ is called a countably additive measure or simply a measure provided that (iii) $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ for all pairwise disjoint sequences $(A_n)_{n=1}^{\infty}$ such that $A_n \in A_c$ and $\bigcup_{n=1}^{\infty} A_n \in A_c$. When a measure μ is defined on \mathcal{B}, we call it a Borel measure. A measure μ defined on \mathcal{B} has support A where $A \subseteq X$ and $A \in \mathcal{B}$ if $|\mu|(X \setminus A) = 0$. A finitely additive measure μ defined on A_c or \mathcal{B} is regular whenever A is in the domain of definition of μ and $\varepsilon > 0$, there are closed and open sets C and U such that $C \subseteq A \subseteq U$ and $|\mu|(U \setminus C) < \varepsilon$.

Note when μ has compact support, this definition of regularity coincides with the one usually given in the books on measure theory. For more information on measure theory see [4] and [6].

Now we fix some notations.

A (signed) measure μ defined on \mathcal{B} is said to be a finite (signed) measure if $|\mu(A)| < \infty$ holds for each $A \in \mathcal{B}$. It can be shown that a signed measure μ is finite if and only if $|\mu|(X) < \infty$. So a finite signed measure defined on \mathcal{B}, has finite total variation. For details on the above, see [1], 26.

Now let $M_+(X)$ be the set of all finite (signed) regular Borel measures on X. Let $M_+(X) = \{\mu \in M_+(X) : \mu \geq 0\}$, that is, μ is a positive measure. Throughout the remaining part of this paper we will assume the following extra condition on α: the members of α are closed.
Now define \(M_{\mathcal{B},a}(X) = \{ \mu \in M_{\mathcal{B}}(X): \mu \) has a support \(A(\subset X) \) such that \(A \in a \} \). Let \(M^+_{\mathcal{B},a}(X) = \{ \mu \in M_{\mathcal{B},a}(X): \mu \geq 0 \} \). When \(a = K(X) \) or \(F(X) \), we write \(M_{\mathcal{B},K}(X) \) or \(M_{\mathcal{B},F}(X) \) respectively.

The next thing to observe is that given \(\mu \in M_{\mathcal{B}}(X) \),\\(||\mu|| = |\mu|(X) \) defines a norm on \(M_{\mathcal{B}}(X) \). So \((M_{\mathcal{B}}(X),||\cdot||) \) is actually a normed linear space. Also \(M^+_{\mathcal{B}}(X) \) is a metric space when equipped with the norm \(p \) given by \(p(\mu_1,\mu_2) = ||\mu_1 - \mu_2|| \) for every \(\mu_1,\mu_2 \in M^+_{\mathcal{B}}(X) \). Note \((M_{\mathcal{B},a}(X),||\cdot||) \) is a normed linear space while \((M^+_{\mathcal{B},a}(X),p) \) is a metric space.

Before having our first theorem in this section, we need the following two lemmas.

Lemma 4.1. Suppose \(Y \) is a Borel subset of a completely regular Hausdorff space \(X \). Let \(\mathcal{B}(X) \) and \(\mathcal{B}(Y) \) be the \(\sigma \)-algebras of Borel subsets of \(X \) and \(Y \) respectively. Then \(\mathcal{B}(X) \cap Y = \mathcal{B}(Y) \) where \(\mathcal{B}(X) \cap Y = \{ B \cap Y: B \in \mathcal{B}(X) \} \).

Proof. Define \(\mathcal{D} = \{ A \in P(X): A = E \cup (B\setminus Y); E \in \mathcal{B}(Y) \) and \(B \in \mathcal{B}(X) \} \) where \(P(X) \) is the power set of \(X \). Note \(X\setminus (E \cup (B\setminus Y)) = (Y\setminus E) \cup ((X\setminus (B\setminus Y))\setminus Y) \). Now it can be easily shown that \(\mathcal{D} \) is a \(\sigma \)-algebra on \(X \) containing all the closed subsets of \(X \). Hence \(\mathcal{B}(X) \subseteq \mathcal{D} \). So \(\mathcal{B}(X) \cap Y \subseteq \mathcal{D} \cap Y \). But \(\mathcal{D} \cap Y = \mathcal{B}(Y) \). So \(\mathcal{B}(X) \cap Y \subseteq \mathcal{B}(Y) \). Note \(\mathcal{B}(X) \cap Y \) is a \(\sigma \)-algebra on \(Y \) and if \(C \) is a closed subset of \(Y \), then \(C = C' \cap Y \) for some closed subset \(C' \) of \(X \) which means \(C \in \mathcal{B}(X) \cap Y \). Hence \(\mathcal{B}(Y) \subseteq \mathcal{B}(X) \cap Y \). Therefore \(\mathcal{B}(X) \cap Y = \mathcal{B}(Y) \).
Lemma 4.2. If \(A \) is a compact subset of a completely regular Hausdorff space \(X \), then for every closed set \(B \subseteq X \setminus A \), there exists a continuous function \(f: X \to I \) such that \(f(x) = 0 \) for \(x \in A \) and \(f(x) = 1 \) for \(x \in B \).

Proof. See [5], page 168.

Theorem 4.3. Suppose \(\alpha \subseteq K(X) \), that is, the members of \(\alpha \) are compact. Then \((M_{b,\alpha}(X), \| \cdot \|) \) is isometrically isomorphic to \((\Lambda_{\alpha}(X), \| \cdot \|_{\ast}) \) while \(M_{b,\alpha}^{+}(X) \) is identified with \(\Lambda_{\alpha}^{+}(X) \) under this isometric isomorphism.

Proof. Define \(F: M_{b,\alpha}(X) \to \Lambda_{\alpha}(X) \) by \(F(\mu)(f) = \int f \, d\mu \) for each \(\mu \in M_{b,\alpha}(X) \) and \(f \in C_{\alpha}^{*}(X) \). Let \(K \) be a compact support of \(\mu \) belonging to \(\alpha \), that is, \(|\mu|(X \setminus K) = 0 \) and \(K \in \alpha \). Then for each \(f \in C_{\alpha}^{*}(X) \), \(|F(\mu)(f)| = |\int f \, d\mu| = |\int_{K} f \, d\mu| \leq |\int_{K} f \, d\mu| \leq |\mu|(X) \cdot P_{K}(f) \) and so \(F(\mu) \) is continuous. Clearly \(F(\mu) \) is linear. Hence \(F(\mu) \in \Lambda_{\alpha}(X) \).

Also \(\| F(\mu) \|_{\ast} \leq \sup \{ |\mu|(K) \cdot P_{K}(f) : f \in C_{\alpha}^{*}(X), \| f \|_{\infty} \leq 1 \} = |\mu|(K) = \| \mu \|_{\ast} \).

Now we prove the reverse inequality, that is, \(\| \mu \|_{\ast} \leq \| F(\mu) \|_{\ast} \).

Note \(|\mu|(K) = \sup \{ \Sigma |\mu|(A_{i}) : \{ A_{i} \} \) is a finite disjoint collection of \(B \) with \(\bigcup A_{i} \subseteq K \}. \) So given \(\epsilon > 0 \), there exist \(A_{1}, \ldots, A_{n} \in B \) such that \(A_{i}'s \) are pairwise disjoint and \(\Sigma_{i=1}^{n} |\mu|(A_{i}) > |\mu|(K) - \epsilon \). Since \(\mu \) is regular there exist compact sets \(C_{i} \) and open sets \(U_{i} \) such that \(C_{i} \subseteq A_{i} \subseteq U_{i} \) and \(|\mu|(U_{i} \setminus C_{i}) < \epsilon/n \) for \(1 \leq i \leq n \). Since the compact subsets \(C_{i}'s \) are pairwise disjoint, pairwise disjoint open sets \(V_{i} \) exist such that \(C_{i} \subseteq V_{i} \). Now let
\(W_i = U_i \cap V_i \). Then \(C \cap (X \setminus W_i) = \emptyset \). Hence by Lemma 4.2, there exists a continuous function \(f_i : X + I \) such that
\(f_i(C_i) = \{1\} \) and \(f_i(X \setminus W_i) = 0 \). Let \(a_i = \frac{\mu(A_i)}{\mu(A_i)} \) if \(\mu(A_i) \neq 0 \) and if \(|\mu(A_i)| = 0 \), let \(a_i = 0 \). Let \(f = \sum_{i=1}^{n} a_i f_i \). Since \(W_i \)'s are pairwise disjoint, \(\|f\|_{\infty} < 1 \).

Now \(\int f \, d\mu - \sum_{i=1}^{n} |\mu(A_i)| \)
\[= \left| \sum_{i=1}^{n} a_i \int f_i \, d\mu - \sum_{i=1}^{n} |\mu(A_i)| \right| \]
\[= \left| \sum_{i=1}^{n} a_i \int f_i \, d\mu - \sum_{i=1}^{n} |\mu(A_i)| \right| \]
\[= \left| \sum_{i=1}^{n} [a_i f_i \, d\mu - |\mu(A_i)|] + \sum_{i=1}^{n} a_i \int f_i \, d\mu \right| \]
\[\leq \sum_{i=1}^{n} |a_i| |\mu(C_i) - \mu(A_i)| + \sum_{i=1}^{n} a_i \int f_i \, d\mu \]
\[\leq \sum_{i=1}^{n} |a_i| |\mu(C_i) - \mu(A_i)| + \sum_{i=1}^{n} a_i \int f_i \, d\mu \]
\[\leq \sum_{i=1}^{n} |\mu(A_i - C_i)| + \sum_{i=1}^{n} |\mu(W_i - C_i)| \]
\[< n \cdot \varepsilon + n \cdot \varepsilon = 2\varepsilon. \]

So \(\|F(\mu)\|_{*} \geq \|f \, d\mu\| - \sum_{i=1}^{n} |\mu(A_i)| - 2\varepsilon > |\mu|(X) - 3\varepsilon = |\mu| - 3\varepsilon. \) Therefore \(|\mu| - 3\varepsilon < \|F(\mu)\|_{*} \leq |\mu|. \) Hence \(\|F(\mu)\|_{*} = |\mu|, \) that is, \(F \) is an isometry.

Now we need to show that \(F \) is onto. Suppose \(\lambda \in A_\alpha(X) \). Then \(\lambda \) can be written as \(\lambda = \lambda^+ - \lambda^- \) where
\[\lambda^+, \lambda^- \in \Lambda^+_\alpha(X). \] Now if \(\lambda \) has a compact support \(K \) belonging to \(\alpha \), then both \(\lambda^+ \) and \(\lambda^- \) have compact support \(K \). To show \(F \) is onto, we try to get \(\mu_1, \mu_2 \in M^+_{\mathbb{D}, \alpha}(X) \) such that
\[\lambda^+ = F(\mu_1) \quad \text{and} \quad \lambda^- = F(\mu_2). \]
So \(\lambda = \lambda^+ - \lambda^- = F(\mu_1) - F(\mu_2) = F(\mu_1 - \mu_2) = F(\mu) \) where \(\mu = \mu_1 - \mu_2 \in M^+_{\mathbb{D}, \alpha}(X) \). So we just need to consider \(\lambda^+ \). Define \(\lambda^+_K : C^*(K) \to \mathbb{R} \) as follows. For each \(f \in C^*(K) \), choose an \(f_K \in C^*_\alpha(X) \) such that \(f_K|_K = f \). Then define \(\lambda^+_K(f) = \lambda^+(f_K) \). Since \(\lambda^+ \) is supported on \(K \), \(\lambda^+_K \) is well-defined. Also since \(\lambda^+ \) is linear, so is \(\lambda^+_K \). Finally \(\lambda^+_K \) is continuous since
\[\sup \{ |\lambda^+_K(f)| : f \in C^*(K), \|f\|_* \leq 1 \} = \sup \{ |\lambda^+(f)| : f \in C^*(X), \|f\|_* \leq 1 \} = \|\lambda^+\|_* < \infty. \]
By the Riesz Representation Theorem (see [1]), there exists a \(\mu_K \in M^+_{\mathbb{D}}(K) \) such that
\[\lambda^+_K(f) = \int_K f \, d\mu_K \text{ for all } f \in C^*(K). \]
It only remains to show that an element \(\mu_1 \in M^+_{\mathbb{D}}(X) \) can be found such that \(\mu_1(B) = \mu_K(B \cap K) \) for all \(B \in \mathcal{B} \).

Then \(\mu_1 \) would be supported on \(K \) so that \(\mu_1 \) would be in
\[M^+_{\mathbb{D}, \alpha}(X) \] and thus for each \(f \in C^*(X), \lambda^+(f) = \lambda^+_K(f|_K) = \int_K f|_K \, d\mu_K = \int f \, d\mu_1 = F(\mu_1)(f) \) which shows that \(\lambda^+ = F(\mu_1) \).

First observe that because of Lemma 4.1, \(\mu_1 \) is well-defined on \(\mathcal{B} \). So we only need to show that \(\mu_1 \) is regular. Let \(B \in \mathcal{B} \) and let \(\varepsilon > 0 \). Since \(\mu_K \) is regular, there exists a compact subset \(C \) of \(K \) and an open subset \(U \) of \(K \) such that \(C \subseteq B \cap K \subseteq U \) and \(\mu_K(U \setminus C) < \varepsilon \). Let \(V = U \cup (X \setminus K) \) which is open in \(X \). Then \(C \subseteq B \subseteq V \) and \(\mu_1(V \setminus C) = \mu_K((V \setminus C) \cap K) = \mu_K(U \setminus C) < \varepsilon \). Therefore \(\mu_1 \) is regular and is thus an element of \(M^+_{\mathbb{D}, \alpha}(X) \).
Note when $\alpha = F(X)$ or $K(X)$, the above theorem tells us what is exactly the measure-theoretic counterpart of $\Lambda_p(X)$ or of $\Lambda_k(X)$ respectively. Note that when $\alpha = F(X)$, $M_{b,\alpha}(X)$ is actually the linear space over \mathbb{R} generated by the set of Dirac's measures on X. This fact explains why $\Lambda_p(X)$ and $\Lambda^+_p(X)$ cannot be complete because a limit of a Cauchy sequence in $M_{b,\alpha}(X)$ or in $M_{b,\alpha}^+(X)$ may converge to a regular Borel measure on X with infinite support.

Now what is the measure-theoretic counterpart of $\Lambda_\omega(X)$? To answer this question, we introduce a new measure space. Let $M_c(X)$ be the set of all bounded finitely additive regular measures defined on \mathcal{A}_c. Again $M_c(X)$ is a normed linear space with the total variation norm. Let $M_c^+(X) = \{\mu \in M_c(X): \mu > 0\}$.

Theorem 4.4. If X is a normal and Hausdorff, then $(M_c(X), \|\cdot\|)$ is isometrically isomorphic to $(\Lambda_\omega(X), \|\cdot\|_*)$ while $M_c^+(X)$ is identified with $\Lambda_\omega^+(X)$ under this isometric isomorphism.

Proof. See [3], pages 78-83.

But what about the countable additivity of elements of $M_c(X)$? When X is countably compact, we have the following answer.

Theorem 4.4. If X is countably compact and if μ is a bounded regular finitely additive measure defined on \mathcal{A}_c, then μ is countably additive on \mathcal{A}_c, that is, $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ whenever (A_n) is a countable family of pairwise
disjoint sets from A_c with union in A_c. Moreover μ has a regular countably additive extension to the σ-algebra B of Borel subsets of X.

Proof. See Theorem 3.11 in [7]. Also see [3].

Now the last theorem can be used to improve Theorem 4.4 to the following version.

Theorem 4.6. If X is countably compact, normal and Hausdorff, then $M^+_B(X)$ is isometrically isomorphic to $\Lambda^+_\infty(X)$ while $M^+_B(X)$ is identified with $\Lambda^+_\infty(X)$ under this isometric isomorphism.

Since $\Lambda^+_\alpha(X) \subseteq \Lambda^+_\infty(X)$, for a countably compact, normal Hausdorff space, we have the following measure-theoretic counterpart of $\Lambda^+_\alpha(X)$.

Theorem 4.7. If X is countably compact, normal and Hausdorff, then $M^+_{B,\alpha}(X)$ is isometrically isomorphic to $\Lambda^+_\alpha(X)$ while $M^+_{B,\alpha}(X)$ is identified with $\Lambda^+_\alpha(X)$ under this isometric isomorphism.

5. Density

The density $d(X)$ of a space X is the smallest infinite cardinal number m such that X has a dense subset which has cardinality less than or equal to m. Now a space X is separable if and only if $d(X) = \aleph_0$. If X is a subspace of a metrizable space Y, then $d(X) \leq d(Y)$.

Theorem 5.1. For each space X, $d(\Lambda^+_\alpha(X)) = d(\Lambda^+_\alpha(X))$.

Proof. Use Theorem 3.1.
Corollary 5.2. $\Lambda_\alpha^+(X)$ is separable if an only if $\Lambda_\alpha(X)$ is separable.

For each $x \in X$, define the evaluation function at x, $\phi_x : \mathcal{C}_\alpha^*(X) \rightarrow \mathbb{R}$ by taking $\phi_x(f) = f(x)$ for each $f \in \mathcal{C}_\alpha^*(X)$. Now ϕ_x is a positive linear functional on $\mathcal{C}_\alpha^*(X)$ which is supported on $\{x\}$. Now if $\{x\} \in \alpha$, then by Lemma 2.1 $\phi_x \in \Lambda_\alpha^+(X)$.

For the remainder of this section, the notation $|X|$ stands for the cardinality of X.

Theorem 5.3. Suppose $F(X) \subseteq \alpha$. Then $|X| \leq d(\Lambda_\alpha^+(X))$.

Proof. Since $F(X) \subseteq \alpha$, $\phi_x \in \Lambda_\alpha^+(X)$ for all $x \in X$. Define the evaluation function $\phi : X \rightarrow \Lambda_\alpha^+(X)$ by taking $\phi(x) = \phi_x$. Since $\mathcal{C}(X)$ separate points, then ϕ is one-to-one. Therefore $|\phi(X)| = |X|$. Now let x and y be distinct points of X. Then $d_*(\phi_x, \phi_y) = \|\phi_x - \phi_y\|_* = \sup \{|\phi_x(f) - \phi_y(f)| : f \in \mathcal{C}(X), \|f\|_\infty \leq 1\} = \sup \{|f(x) - f(y)| : f \in \mathcal{C}(X), \|f\|_\infty \leq 1\} \geq 1$. So $\phi(X)$ is a discrete subset of $\Lambda_\alpha^+(X)$ and hence $|\phi(X)| \leq d(\phi(X))$. Therefore $|X| = |\phi(X)| \leq d(\phi(X)) \leq d(\Lambda_\alpha^+(X))$.

Corollary 5.4. Suppose $F(X) \subseteq \alpha$ and $\Lambda_\alpha^+(X)$ is separable. Then X is countable.

In order to establish a more general theorem on separability of $\Lambda_\alpha^+(X)$, we need to discuss the separability of $M^+_{b,\alpha}(X)$. Note that the proof of Theorem 3.3 in [8] actually shows that if X is countable, then $M^+_{b}(X)$ is
separable. So when X is countable, $M_{d,\alpha}(X)$ and $M^+_{d,\alpha}(X)$
are also separable.

Theorem 5.5. Suppose $F(X) \subseteq \alpha \subseteq K(X)$. Then $\Lambda^+_{\alpha}(X)$
is separable if and only if X is countable.

Proof. Suppose $\Lambda^+_{\alpha}(X)$ is separable. Then by

Corollary 5.4, X is countable. Conversely, let X be

countable. Now since $\alpha \subseteq K(X)$, by Theorem 4.3, $\Lambda^+_{\alpha}(X)$ is

isomorphic to $M^+_{d,\alpha}(X)$. So $d(\Lambda^+_{\alpha}(X)) = d(M^+_{d,\alpha}(X))$. Hence

$\Lambda^+_{\alpha}(X)$ is separable.

Lastly, we talk about the separability of $\Lambda_{\infty}(X)$.

Note that Theorem 5.1 gives us $d(\Lambda^+_{\infty}(X)) = d(\Lambda_{\infty}(X))$. This

means that $\Lambda_{\infty}(X)$ is separable if and only if $\Lambda^+_{\alpha}(X)$ is

separable.

Theorem 5.6. $\Lambda_{\infty}(X)$ is separable if and only if X is

compact and countable.

Proof. If $\Lambda_{\infty}(X)$ is separable, then $\Lambda_{k}(X)$ is separable

and so X is countable. Again, since $\Lambda_{\infty}(X)$ is the conjugate

space of the normed linear space $C^*(X)$, $C^*_{\infty}(X)$ is separable.

But this implies that X is compact (see [9], page 54).

Conversely, let X be compact and countable. Since X is

compact, $C^*_{K}(X) = C^*_{K}(X)$ and consequently $\Lambda_{\infty}(X) = \Lambda_{k}(X)$.

But X is countable and so $\Lambda_{k}(X)$ is separable. Hence

$\Lambda_{\infty}(X)$ is separable.

References
1. C. Aliprantis and O. Burkinshaw, *Principle of Real

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061