QUASI-DEVELOPABLE MANIFOLDS

by

H. BENNETT AND Z. BALOGH
QUASI-DEVELOPABLE MANIFOLDS

H. Bennett and Z. Balogh

In [RZ] Reed and Zenor showed that a connected, locally connected, locally compact normal Moore space is metrizable. This result re-opened interest in the general question of metrization of manifolds, pending the solution of Wilder's Problem ([RZ], [R]).

Recall that a manifold is a connected regular T_1-space for which there is a natural number n such that each point has a neighborhood that is homeomorphic to \mathbb{R}^n. Hence manifolds are locally compact and locally connected, but not necessarily metrizable or, equivalently, paracompact. The Reed-Zenor theorem has as a corollary that normal Moore manifolds are metrizable.

For an excellent source of information on non-metrizable manifolds see Peter Nyikos' article in [Nyl].

A natural generalization of a developable space is a quasi-developable space. Recall that a space X is developable (quasi-developable) if there exists a sequence $(G_n : n \in \omega)$ of open covers of X (collections of open subsets of X) such that for each $x \in X$, if U is open in X and $x \in U$ then there is a natural number n such that $st(x, G_n) \neq \emptyset$ and $st(x, G_n) \subseteq U$. If a quasi-developable space is perfect (= closed sets are G_δ sets) then it is developable [B]. A regular T_1 space that is developable is a Moore space. It is shown in [BL] that if $(G_n : n \in \omega)$
is a quasi-development for X and if $x \in U$ where U is open in X then there exists n such that $\emptyset \neq \text{st}(x, G_n) \subseteq U$ and x is an element of only one member of G_n.

In this note an example of a quasi-developable 2-manifold that is not developable is given. A different example was independently obtained by Peter Nyikos [Ny2]. Also partial results are proved concerning the metrizability of quasi-developable manifolds.

Let all spaces in this paper be T_1-spaces. The following lemma (proved in [RuZ]) is needed to develop techniques used in constructing the example.

Lemma 1 [RuZ]. Let $\{U_n : n \in \omega\}$ be a nested sequence of open connected subsets of $D' = (-1,1) \cap (0,1)$ such that $\bigcap \{\text{cl}(U_n, D') : n \in \omega\} = \emptyset$ where $\text{cl}(U_n, D')$ denotes the closure of U_n in D' with the relative topology from \mathbb{R}^2.

Furthermore let $p_n \in U_n$ for each $n \in \omega$. Then there is a homeomorphism g of D' into D' such that:

1. $D' - g(D')$ is homeomorphic to $J = [0,1)$,
2. $D' - g(D') \subseteq \text{cl}(\{g(p_n) : n \in \omega\}, D')$ and
3. $D' - g(D') \subseteq \text{Int}(\text{cl}(g(U_n), D'), D')$ for each $n \in \omega$.

where $\text{Int}(A, B)$ denotes the interior of A in B.

This lemma is a tool in the following definition.

Definition 1. Let M be a 2-manifold, D a subspace of M homeomorphic to D', $\{U_n : n \in \omega\}$ a nested sequence of open connected subsets of D with $\bigcap \{\text{cl}(U_n, M) : n \in \omega\} = \emptyset$
and $p_n \in U_n$ for each $n \in \omega$. A Rudin-Zenor extension of M with respect to D, $\{U_n: n \in \omega\}$ and $\{p_n: n \in \omega\}$ is a topological space M' described as follows:

Let g be a homeomorphism of D into D as in Lemma 1. Let g' be a homeomorphism of J onto $D - g(D)$ where J is a copy of $[0,1)$ disjoint from M. Let g^* be the union of g and g' (thus g^* maps $D \cup J$ onto D). Then M' is the unique topological space satisfying:

(i) the underlying set of M' is $M \cup J$,

(ii) M and $J \cup D$ are open in M',

(iii) M keeps its original topology as a subspace of M', and

(iv) the subspace topology on $D \cup J$ is such that g^* is a homeomorphism.

Notice the Rudin-Zenor extension of M adds one copy of J to M.

Definition 2. Let M be a 2-manifold and A an index set. Let $V = \{D_\alpha: \alpha \in A\}$ where each D_α is a subspace of M homeomorphic to D'. For each $\alpha \in A$ let $U_\alpha = \{U(\alpha, n): n \in \omega\}$ be a decreasing sequence of connected open subsets of D_α such that $\cap \{\text{cl}(U(\alpha, n), M): n \in \omega\} = \emptyset$ and let $U_\alpha = \{U_\alpha: \alpha \in A\}$. For each $\alpha \in A$ and $n \in \omega$, let $p(\alpha, n) \in U(\alpha, n)$ and let $P_\alpha = \{p(\alpha, n): n \in \omega\}$. Let $P = \{P_\alpha: \alpha \in A\}$. Let $J = \{J_\alpha: \alpha \in A\}$ where each J_α is a copy of $[0,1)$, $J_\alpha \cap J_\beta = \emptyset$ if $\alpha \neq \beta$ and each J_α is disjoint from M. The free Rudin-Zenor extension of M relative to (V, U, P, J), denoted by $FRZ(M)$, is the unique topological space such that
(i) the underlying set of FRZ(M) is $\bigcup \{ J_\alpha : \alpha \in A \} \cup M$,
(ii) for each $\alpha \in A$, $M \cup J_\alpha$ is an open subspace of FRZ(M), and
(iii) for each $\alpha \in A$ the subspace topology of $M \cup J_\alpha$ is a Rudin-Zenor extension of M.

Notice that FRZ(M) adds $|A|$ many copies of J to M and that FRZ(M) is a T_1-space.

Theorem 1. Every free Rudin-Zenor extension is locally \mathbb{R}^2. It is Hausdorff (and thus a 2-manifold) if the following property (*) holds:

(*) for each $\alpha, \beta \in A$, $\alpha \neq \beta$, there exists $n \in \omega$ such that

$$\text{cl}(U(\alpha, n), M) \cup \text{cl}(U(\beta, n), M) = 0.$$

Proof. FRZ(M) is locally \mathbb{R}^2 since, for each $\alpha \in A$, $M \cup J_\alpha$ is a Rudin-Zenor extension of M. The only difficult case for Hausdorffness of FRZ(M) is when $x \in J_\alpha', y \in J_\beta'$ and $\alpha \neq \beta$. Property (*) covers this case.

In order to construct the desired example two topological spaces must be reviewed.

Example 1. (Example 2.17 of Gary Gruenhage's article in [G]). Let B be a Bernstein subset of \mathbb{R} and let

$\{ B_\alpha : \alpha < 2^\omega \}$ be an enumeration of all countable subsets of B such that $\text{cl}(B_\alpha, \mathbb{R})$ is uncountable. For each $\alpha < 2^\omega$ choose
\[x_\alpha \in \text{cl}(B_\alpha, \mathbb{R}) \setminus (B \cup \{x_\beta: \beta < \alpha\}) \]

and choose points \(x_\alpha(m) \in B_\alpha \) such that the sequence
\[(x_\alpha(m): m \in \omega) \]
converges to \(x_\alpha \) in \(\mathbb{R} \). Let \(H = \{x_\alpha: \alpha < 2^\omega\} \) and \(X = B \cup H \). Topologize \(X \) by letting points of \(B \) be isolated and, if \(N(x_\alpha, k) = \{x_\alpha\} \cup \{x_\alpha(m): n \geq k\} \) for each \(k \in \omega \), by letting \(\{N(x_\alpha, k): k \in \omega\} \) be a local base at \(x_\alpha \). Then \(X \) is a locally compact quasi-developable space such that \(H \) is not a \(G_\delta \)-subset of \(X \) (the details of these results are in \([G]\)).

Example 2. This example is the Prüfer Manifold \(P(\mathbb{R}) \) ([Ra]) (see example 2.7 of Peter Nyikos' article in \([Nyl]\)). To construct this example collared copies of the real line (i.e. \([0,1) \times \mathbb{R}\)) are attached at each point of the \(x \)-axis to the open upper half plane. Thus the Prüfer manifold as a point set can be visualized as a subset of \(\mathbb{R}^3 \). In fact
\[
P(\mathbb{R}) = \{(x,y,z): x \in \mathbb{R}, y > 0, z = 0\} \cup (\cup \{(x) \times [0,-1) \times \mathbb{R}: x \in \mathbb{R}\}).
\]

Let \(M(x) \) denotes the collared real line that is attached at the point \(x \) on the \(x \)-axis. A Prüfer manifold can be obtained from each subset \(S \) of \(\mathbb{R} \) by attaching an \(M(x) \) to the open upper half plane at each point \(x \) of \(S \). The resulting Prüfer manifold \(P(S) \) is a developable 2-manifold that inherits its topology from \(P(\mathbb{R}) \). Notice that if \(S \) is a countable discrete in itself (i.e. \(S \) contains no limit points) subset of \(\mathbb{R} \) then \(P(S) \) is homeomorphic to \(\mathbb{R}^2 \).
(which is homeomorphic to $D' = (-1,1) \times (0,1)$). Also notice that $P(S)$ as a point set is contained in \mathbb{R}^3.

Using these two examples the desired example can be constructed.

Example 3. There exists a quasi-developable 2-manifold Z that is not developable.

Consider the set $X = B \cup H$ of Example 1 as a subset of the x-axis and let $P(B)$ be the Prüfer 2-manifold constructed over the Bernstein set B. Recall that $H = \{x : a < 2^\omega\}$.

For each $a < 2^\omega$, let
\[
D_a = \{(x,y,z) : x \in \mathbb{R}, y > 0, z = 0\} \cup (\cup \{M(x\alpha(n)) : n \in \omega\}).
\]

Since $\{x\alpha(n) : n \in \omega\}$ is discrete in itself as a subset of \mathbb{R}, D_a is an open subset of $P(B)$ that is homeomorphic to D'. Let $\mathcal{D} = \{D_a : a < 2^\omega\}$.

For each $a < 2^\omega$, let $U(a,n) = A(a,n) \cup B(a,n)$ where
\[
A(a,n) = \{(x,y,z) \in \mathbb{R}^3 : |(x\alpha,0,0) - (x,y,0)| < 1/n, y > 0\}
\]
and
\[
B(a,n) = \cup \{M(x\alpha(m)) : |x\alpha - x\alpha(m)| < 1/n\}.
\]

It follows that $U(a,n)$ is an open connected subset of and that $D_a \cup U(a,n) \supset U(a,n + 1)$ for each $n \in \omega$, and
\[
\cap \{\text{cl}(U(a,n), P(B)) : n \in \omega\} = \emptyset.
\]

Let $U_\alpha = \{U(a,n) : n \in \omega\}$ and $U = \{U_\alpha : a < 2^\omega\}$. Let $p(a,n) = (x\alpha(n),0,0)$ for each $a < 2^\omega$ and $n \in \omega$. Notice
that \(p(\alpha, n) \in U(\alpha, n) \). Let \(P_\alpha = \{ p(\alpha, n): n \in \omega \} \) and \(P = \{ p_\alpha: \alpha < 2^\omega \} \).

Let \(J = \{ J_\alpha: \alpha < 2^\omega \} \) where each \(J_\alpha \) is a copy of \([0, 1)\) disjoint from \(P(B) \) and if \(\alpha \neq \beta \), then \(J_\alpha \cap J_\beta = \emptyset \).

Let \(Z \) be \(\text{FRZ}(P(B)) \) with respect to \((V, U, P, J)\). Notice that \(P(B) \) satisfies property \((*)\). Thus \(\text{FRZ}(P(B)) \) is a 2-manifold.

To see that \(\text{FRZ}(P(B)) \) is not perfect consider the subspace

\[Y = \bigcup \{ J_\alpha: \alpha < 2^\omega \} \cup \{(x, 0, 0): x \in B\}. \]

Notice that \(B' = \{(x, 0, 0) \in \text{FRZ}(P(B)): x \in B\} \) is an open subset of \(Y \). Hence if \(\text{FRZ}(P(B)) \) was perfect, then \(B' \) would be an \(F_\sigma \)-set in \(Y \). Assume \(B' = \bigcup \{ F'_n: n \in \omega \} \) where \(F'_n \) is closed in \(Y \). There exists \(n \in \omega \) such that \(|F'_n| > \omega\). Let \(F_n = \{ x \in B: (x, 0, 0) \in F'_n \} \). Then \(F_n \) as a closed subset in the space \(X \) of Example 1 contains a \(B_\alpha \).

In this space \(x_\alpha \) is a limit of \(B_\alpha \) and hence of \(F_n \). Thus, in \(Y \), \(J_\alpha \) is contained in \(\overline{\text{cl}(F'_n, Y)} \). But \(J_\alpha \cap B' = \emptyset \). Thus \(B' \) is not an \(F_\sigma \) and it follows that \(\text{FRZ}(P(B)) \) is not perfect.

The following theorem is used to show that \(\text{FRZ}(P(B)) \) is quasi-developable.

Theorem 1. Let \(X \) be a regular, locally quasi-developable, \(T_1 \)-space. The following are equivalent:

(i) \(X \) is quasi-developable,

(ii) \(X \) is weakly submetacompact, and
(iii) X has a σ-relatively discrete cover by quasi-developable sets.

Proof. (i) \rightarrow (ii) see [BL]. For (ii) \rightarrow (iii) let $O(x)$ be an open quasi-developable subset of X containing x for each $x \in X$. Then $\{O(x) : x \in X\}$ has a σ-relatively discrete refinement (that is also a cover) by quasi-developable subsets. For (iii) \rightarrow (i) let $X = \bigcup \{U^F(n) : n \in \omega\}$ where $F(n) = \{F(n, \alpha) : \alpha \in I_n\}$ is a relatively discrete collection of quasi-developable (hence weakly submetacompact) subsets of X. For each $F(n, \alpha) \in F_n$ there exists an open set $U(n, \alpha)$ such that

$$U(n, \alpha) \cap \{U^F(n) : n \in \omega\} = F(n, \alpha).$$

Fix n and α and for each $x \in F(n, \alpha)$ let $O(x)$ be an open quasi-developable set that contains x such that $O(x) \subset U(n, \alpha)$. Since $\{O(x) \cap F(n, \alpha) : x \in F(n, \alpha)\}$ is an open cover of $F(n, \alpha)$ it has a σ-relatively discrete refinement $R(n, \alpha) = \{R(n, \alpha, k) : k \in \omega\}$ that covers $F(n, \alpha)$. Fix k. For each $R \in R(n, \alpha, k)$ let $V(R)$ be an open set in X such that

$$\{V(R) \cap F(n, \alpha) : R \in R(n, \alpha, k)\}$$

witnesses that $R(n, \alpha, k)$ is a relatively discrete collection. If $R \in R(n, \alpha, k)$ let $x(R) \in F(n, \alpha)$ such that R refines $O(x(R))$. Let $\{G(n, \alpha, k, R, m) : m \in \omega\}$ be a quasi-development for $O(x(R)) \cap V(R) \cap U(n, \alpha)$. Let

$$H(n, k, m) = \{G \in \{G(n, \alpha, k, R, m) : F(n, \alpha) \in F_n, R \in R(n, \alpha, k)\}$$

Then $H = \{H(n, k, m) : n \in \omega, k \in \omega, m \in \omega\}$ is a
quasi-development for X. To see this let \(x \in U \) where \(U \) is open in \(X \). There exists \(n \) and \(\alpha \) such that \(x \in F(n,\alpha) \) and there exists \(k \in \omega \) and \(R \in R(n,\alpha,k) \) such that \(x \in R \).

Then there exists \(m \) such that

\[
\text{st}(x, G(n,\alpha,k,R,m)) \subset U \cap O(x(R)) \cap V(R) \cap U(n,\alpha).
\]

Hence \(\text{st}(x, H(n,k,m)) \subset U \).

Notice that the underlying set in \(FRZ(P(B)) \) is \(P(B) \cup (\bigcup \{ J_\alpha : \alpha < 2^\omega \}) \). Since \(P(B) \) as a subspace is developable it has a \(\sigma \)-relatively discrete cover and since \((J_\alpha : \alpha < 2^\omega) \) is a pairwise disjoint collection it is \(\sigma \)-relatively discrete. Since \(FRZ(P(B)) \) is a manifold it is locally quasi-developable. Hence, by the preceding theorem, \(FRZ(P(B)) \) is quasi-developable.

The same argument as Peter Nyikos gives in [Ny1] shows that \(FRZ(P(B)) \) is not normal.

The following question remains open:

Question 1. Is every hereditarily normal quasi-developable manifold paracompact?

A partial affirmative answer is given if \(2^{\omega_1} > 2^\omega \).

Theorem 2. Assume \(2^{\omega_1} > 2^\omega \). Every hereditarily normal quasi-developable manifold is paracompact.

Note that an actually stronger result was announced without proof by one of the authors (see the remark after Theorem 2.5 together with Lemma 2.1 in [Ba]).
According to that result "quasi-developable manifold" can be weakened to "connected, locally c.c.c., hereditarily weakly submeta-Lindelöf space" in Theorem 2 (weakly submeta-Lindelöf = weakly δ^β-refinable). Since the proof of the more general result has not appeared in print we feel justified in giving a proof of Theorem 2 here.

Proof of Theorem 2. First recall a result of Taylor [Ta] showing each first-countable hereditarily normal space has the following property under $2^{\omega_1} > 2^\omega$:

(*) if C is a cub subset of ω_1 and $\{x_\alpha: \alpha \in C\}$ is a weakly σ-discrete set of distinct points then there is a stationary subset $S \subseteq C$ such that $\{x_\alpha: \alpha \in S\}$ has an expansion by pairwise disjoint open sets.

Now suppose indirectly that there is a non-paracompact, hereditarily normal, quasi-developable manifold X. Then X has a connected open submanifold Y of weight ω_1. Let $\{U_\alpha: \alpha \in \omega_1\}$ be an open cover of Y by separable open subsets. Since Y is connected we can choose, for each $\alpha \in \omega_1$, a point

$$y_\alpha \in \text{cl}(\bigcup\{U_\beta: \beta < \alpha\}) \setminus \bigcup\{U_\beta: \beta < \alpha\}.$$

Let C be a cub subset of ω_1 such that $L = \{y_\alpha: \alpha \in C\}$ consists of distinct points. Note that L is locally countable and, thus, a σ-scattered space which is hereditarily weak submetacompact and, hence, weakly σ-discrete ([Ny2], Corollary 3.5). By (*) there is a stationary set $S \subseteq \omega_1$ such that $\{y_\alpha: \alpha \in S\}$ has a pairwise disjoint expansion $\{B_\alpha: \alpha \in S\}$ by open sets. Since
for each $a \in S$ there is an $f(a) < a$ such that $B_a \cap U_{f(a)} \neq \emptyset$. By the pressing down lemma there is a $\beta \in \omega_1$ such that $f(a) = \beta$ for uncountably many $a \in S$. Therefore uncountably many of the B_α's intersect U_β violating the separability of U_β.

References

Texas Tech University
Lubbock, Texas 79409

Miami University
Oxford, Ohio 45701