OPEN MAPS ON RIMCOMPACT SPACES

by

BEVERLY DIAMOND
OPEN MAPS ON RIMCOMPACT SPACES

Beverly Diamond

All spaces in this paper will be completely regular and Hausdorff. A space X is rimcompact if X has a base of open sets with compact boundaries, almost rimcompact if X has a compactification KX in which each point of $KX \setminus X$ has a base in KX of open sets whose boundaries lie in X, and a 0-space if X has a compactification with zero-dimensional remainder.

As mentioned in [Ku], Misic' has pointed out that the property of rimcompactness is preserved under mappings that are simultaneously open and closed, denoted open-closed. The argument is straightforward--if $f: X \rightarrow Y$ is open-closed and U is open in X with compact boundary, then $f[U]$ is an open subset of Y having compact boundary. According to [Ku], this statement also holds for monotone open maps, so that monotone open maps preserve the property of rimcompactness. This last result is extended in [Di3] to the case in which the space X is almost rimcompact or a 0-space. In this paper we indicate that monotone open maps and open-closed maps possess a more general property sufficient for this extension.

An open set U of βX is CI in βX (denoting clopen at infinity) if $U \cap (\beta X \setminus X)$ is clopen in $\beta X \setminus X$. An open set U of X is π-open in X if $\text{bd}_X U$ is compact. For a map $f: X \rightarrow Y$, f^β will denote the extension map from βX into βY.
Definition 1. An open map $f: X \to Y$ is CI preserving if whenever U is a CI open subset of βX, $f^\beta[U]$ is a CI open subset of βY.

As in \([Di_3]\), for a space X and $p \in \beta X$, K_p will denote $\cap \{\beta X \setminus U: U$ is CI open in X, $p \not\in U\}$. According to 2.2 and 2.3 of \([Di_3]\), for $p \in \beta X$, K_p is a connected compact subset of βX. If $K_p \subseteq \beta X \setminus X$, then K_p is the quasicomponent of p in $\beta X \setminus X$ and has a base of CI open sets in βX. If X is a 0-space, for $p \in \beta X \setminus X$, $K_p \subseteq \beta X \setminus X$.

Theorem 1. If $f: X \to Y$ is CI preserving and X is a 0-space, Y is a 0-space.

Proof. We first show that if $f: X \to Y$ is CI preserving and X is a 0-space, then for $p \in \beta Y \setminus Y$, $K_p \subseteq \beta Y \setminus Y$.

Choose $p \in \beta Y \setminus Y$, $y \in Y$ and $x \in f^\beta(y) \cap X$. For each $z \in f^{\beta^+}(p)$, $z \in \beta X \setminus X$ so that $K_z \subseteq \beta X \setminus X$ and $x \not\in K_z$. There is a CI open set V_z of βX such that $x \in V_z$ while $z \not\in V_z$. For each z, $(\beta X \setminus V_z) \cap (\beta X \setminus X)$ is clopen in $\beta X \setminus X$. Then $f^{\beta^+}(p) \subseteq \bigcup \{ (\beta X \setminus V_z) \cap (\beta X \setminus X): z \in f^{\beta^+}(p) \}$, thus there is a finite subset $\{z_i: i = 1 \text{ to } n\}$ of $f^{\beta^+}(p)$ such that $f^{\beta^+}(p) \subseteq \bigcup_{i=1}^{n} (\beta X \setminus V_{z_i}) \cap (\beta X \setminus X)$. Let $V = \cap_{i=1}^{n} V_{z_i}$.

Then $x \in V$, $f^{\beta^+}(p) \cap V = \emptyset$ and V is CI open in βX. It follows that $y = f(x) \in f^\beta[V]$ which is CI and open in βY, while $p \not\in f^\beta[V]$. Thus $K_p \subseteq \beta Y \setminus Y$.

The theorem now follows from the proof of 2.6 of \([Di_3]\).
Theorem 2.6 of [Di₃] is stated for $f: X \rightarrow Y$ monotone open. However, a careful reading of the proof will indicate that the property of the function f actually used is that such a function is CI preserving.

To work with rimcompact and almost rimcompact spaces we need to look at images of π-open sets. In the following, if U is open in βX, $Ex_{\beta X}U$ will denote $\beta X \setminus cl_{\beta X}(X \setminus U)$, the largest open subset of βX whose intersection with X is U.

Lemma 1. If $f: X \rightarrow Y$ is CI preserving and U is π-open in X, then $f[U]$ is π-open in Y and $cl_Y f[U] = f[cl_X U]$.

Proof. The set $f[U]$ is clearly open in Y. For any continuous $f: X \rightarrow Y$, f^β is closed, so that $cl_{\beta Y} f[U] = f^\beta [cl_{\beta X} U]$. Now U is π-open in X, hence $cl_{\beta X} U \setminus Ex_{\beta X} U = bd_{\beta X} Ex_{\beta X} U = cl_{\beta X} bd_{\beta X} U = bd_{\beta X} U \subseteq X$ (see [Sk] or [Di₃]).

Since f is CI preserving, $bd_{\beta Y} f^\beta [cl_{\beta X} U] \subseteq f^\beta [cl_{\beta X} U] \setminus f^\beta [Ex_{\beta X} U] \subseteq f^\beta [cl_{\beta X} U \setminus Ex_{\beta X} U] = f^\beta [bd_{\beta X} U] \subseteq Y$.

Finally, $bd_Y f[U] \subseteq bd_{\beta Y} f^\beta [cl_{\beta X} U] \cap Y \subseteq f[bd_{\beta X} U]$, so that $cl_Y f[U] \subseteq f[U] \cup f[bd_{\beta X} U] = f[cl_X U]$ and $bd_Y f[U]$ is compact.

Example 1 will indicate that a CI preserving map need not be closed on all closed sets, even if the space X is rimcompact, so that the π-open sets form a base.

Corollary 1. Suppose that $f: X \rightarrow Y$ is CI preserving, and that X is almost rimcompact (rimcompact). Then Y is almost rimcompact (rimcompact).
Proof. Suppose first that X is almost rimcompact. It follows from Theorem 1 that Y is a 0-space. According to 2.7 of [Di$_1$], Y is almost rimcompact if and only if each $y \in Y$ has the property (*)': there is a compact set K_y of Y such that if F is closed in Y and $F \cap K_y = \emptyset$, there is a π-open subset V of Y with $y \in V$ and $\text{cl}_yV \cap F = \emptyset$. Since X is almost rimcompact, it also follows from 2.7 of [Di$_1$] that each $x \in X$ has property (*).

Suppose that $y \in Y$; choose $x \in f^+(y)$ and K_x witnessing the fact that x has property (*). Let $K_y = f[K_x]$, and suppose that F is closed in Y with $F \cap K_y = \emptyset$. Then $f^+[F]$ is a closed subset of X with $f^+[F] \cap K_x = \emptyset$. Choose V to be π-open in X with $x \in V$ and $\text{cl}_xV \cap f^+[F] = \emptyset$. Then $y \in f[V]$ which is π-open in Y with $F \cap \text{cl}_yf[V] = F \cap f[\text{cl}_xV] = \emptyset$.

If X is rimcompact, we can choose $K_x = \{x\}$ in the above argument. Then $K_y = \{y\}$, indicating that Y has a base of π-open sets.

In the above argument it is not necessary that each $x \in X$ have property (*) in either the rimcompact or almost rimcompact case. In [Di$_3$], pointwise definitions of rimcompactness and almost rimcompactness are made. (That $x \in X$ have property (*) is one of two conditions defining almost rimcompactness of X at x.) The use of Theorem 1 of this paper is no longer valid under the hypotheses of the next result, but arguments similar to those in Corollary 4 above and 2.8 and 2.9 of [Di$_3$] yield the following:
Theorem 2. Suppose that \(f: X \to Y \) is CI preserving, and that for \(y \in Y \), \(f^+(y) \) contains a point at which \(X \) is almost rimcompact (rimcompact). Then \(Y \) is almost rimcompact (rimcompact).

Finally, we indicate the existence of nontrivial CI preserving maps. The next result generalizes 2.1 of [Di\(_3\)] by removing the hypothesis that \(X \) be a 0-space.

Theorem 3. If \(f: X \to Y \) is monotone and open, then \(f \) is CI preserving.

Proof. Suppose that \(U \) is open and CI in \(\beta X \), and \(p \in (\beta Y \setminus Y) \cap f^\beta[U] \). Then \(f^\beta^+(p) \subseteq \beta X \setminus X \) and \(f^\beta^+(p) \cap U \neq \emptyset \). According to 4.7 of [Di\(_4\)], \(f^\beta \) is monotone; since \(U \cap (\beta X \setminus X) \) is clopen in \(\beta X \setminus X \), \(f^\beta^+(p) \subseteq U \). Then \(f^\beta^+[f^\beta[U] \cap (\beta Y \setminus Y)] = U \cap f^\beta^+[\beta Y \setminus Y] \), thus \(f^\beta[U] \cap (\beta Y \setminus Y) \) is clopen in \(\beta Y \setminus Y \). Since \(f^\beta \) is closed, \(p \in \text{int}_{\beta Y} f^\beta[U] \).

It remains to show that \(f^\beta[U] \cap Y \subseteq \text{int}_{\beta Y} f^\beta[U] \). We first show that \(f^\beta[U] \cap Y = f[U \cap X] \). If \(p \in [f^\beta[U] \cap Y] \setminus f[U \cap X] \), then \(f^+(p) \subseteq X \setminus U \), so that \(\text{cl}_{\beta X} f^+(p) \cap U = \emptyset \). It follows that \(f^\beta^+(p) \cap U = f^\beta^+(p) \cap U \cap (\beta X \setminus X) \) and is open in \(f^\beta^+(p) \). Since \((\beta X \setminus X) \setminus U \) is clopen in \(\beta X \setminus X \), there is an open set \(W \) of \(\beta X \) such that \(W \cap (\beta X \setminus X) = (\beta X \setminus X) \setminus U \), thus \(W \cap U \subseteq X \). Then \(f^\beta^+(p) \cap U = f^\beta^+(p) \setminus W \) and so is closed in \(f^\beta^+(p) \). That is, \(f^\beta^+(p) \cap U \) is clopen in the connected set \(f^\beta^+(p) \), a contradiction.

Choose \(x \in f^+(p) \cap U \) and \(W \) open in \(\beta X \) with \(x \in W \subseteq \text{cl}_{\beta X} W \subseteq U \). Since \(f[W \cap X] \) is open in \(Y \),
That is, \(p \in \text{int}_Y \text{cl}_Y f(W \cap X) \subseteq \text{cl}_Y f(W \cap X) \subseteq f^\beta[\text{cl}_X W] \subseteq f^\beta[U] \).

In 3.4 of [Di], a rimcompact space \(X \), nonrimcompact space \(Y \) and monotone closed map \(f: X \rightarrow Y \) are constructed, indicating that monotone closed maps are not CI preserving.

Theorem 4. Suppose that \(f \) and \(f^\beta \) are open. Then \(f \) is CI preserving.

Proof. If \(U \) is open and CI in \(\beta X \), then \(f^\beta[U] \) is an open subset of \(\beta Y \). Also, \(U \cap f^\beta[\beta Y \setminus Y] \) is clopen in \(f^\beta[\beta Y \setminus Y] \). Since \(f^\beta \) restricted to \(f^\beta[\beta Y \setminus Y] \) is a closed map, \(f^\beta[U] \cap (\beta Y \setminus Y) \) is clopen in \(\beta Y \).

A map \(f: X \rightarrow Y \) is a WZ map if \(\text{cl}_X f^+(y) = f^\beta+(y) \) for each \(y \in Y \). As pointed out in 1.1 of [Is], a closed map is a WZ map. Theorem 4.4 of the same paper states that if \(f: X \rightarrow Y \) is a WZ map, then \(f^\beta \) is open if and only if \(f \) is open. Thus we have the following:

Corollary 2. If \(f: X \rightarrow Y \) is open and WZ, then \(f \) is CI preserving.

Corollary 3. If \(f: X \rightarrow Y \) is open-closed, then \(f \) is CI preserving.

The next example indicates that, as mentioned earlier, a CI preserving map on a space \(X \) need not be closed, even if the \(\pi \)-open sets form a base for \(X \). It also indicates that an open WZ map need not be closed.
Example 1. Let X be the space of countable ordinals, and Y the space X in addition to the first uncountable ordinal. As discussed in 3.10.16 of [En], the projection map \(\pi_Y : X \times Y \rightarrow Y \) is not closed. Since \(X \times Y \) is pseudo-compact, \(\beta(X \times Y) = \beta X \times Y \) (Theorems 1 and 4 of [Gl]). The extension of \(\pi_Y \) over \(\beta(X \times Y) \) is clearly the projection map \(\pi_{\beta X} : \beta X \times Y \rightarrow Y \). Then \(\text{cl}_{\beta X \times Y} \pi_Y^+(y) = \beta X \times \{y\} = \pi_{\beta X}^+(y) \), so that \(\pi_Y \) is an open WZ map.

References

College of Charleston
Charleston, South Carolina 29424