ϵ-MAPPINGS ONTO A TREE AND THE FIXED POINT PROPERTY

by

M. M. Marsh
\textbf{\epsilon -MAPPINGS ONTO A TREE AND THE FIXED POINT PROPERTY}

M. M. Marsh

In 1979 David Bellamy [1] showed that there exist tree-like continua which admit fixed point free mappings. There has been interest since that time in determining conditions under which a tree-like continuum will have the fixed point property. A few results of this nature can be found in [2], [3], [4], [7], [8], and [9]. However, it is still unknown if a simple triod-like continuum must have the fixed point property. This paper establishes several fixed point related theorems for T-like continua, where T is a fixed tree. Corollary 3 gives a necessary condition for a T-like continuum to admit a fixed point free mapping, and Theorem 2 generalizes the fixed point theorem in [7].

A continuum is a nondegenerate compact connected metric space. A continuous function will be referred to as a map or mapping. A continuum X has the fixed point property provided that whenever f is a mapping of X into itself, there is a point x in X such that f(x) = x. A tree is a finite connected, simply connected graph. If \epsilon is a positive number, the mapping f: X \to Y is an \epsilon-mapping if diam(f^{-1}(y)) < \epsilon for each y \in Y. If H is a family of continua, we say that the continuum X is H-like provided that, for each positive number \epsilon, there is an
\(\varepsilon\)-mapping of \(X\) onto a member of \(H\). For example, if \(H\) is the family of all trees, we simply say that \(X\) is tree-like; or if \(H\) is a set whose only member is the continuum \(T\), we say that \(X\) is \(T\)-like.

Let \(T\) be a tree. The point \(v \in T\) is a branchpoint (an endpoint) of \(T\) if \(T - \{v\}\) has at least three components (only one component). If \(v\) is either a branchpoint or an endpoint of \(T\), we say that \(v\) is a vertex of \(T\). If \(v\) and \(w\) are points of \(T\), let \([v, w]\) denote the arc in \(T\) with endpoints \(v\) and \(w\), and let \(T(v, w]\) denote the component of \(T - \{v\}\) that contains \(w\).

Lemma. Let \(F\) be a function from the vertex set of the tree \(T\) into the set of all subsets of \(T\). If for each vertex \(v\) of \(T\), \(F(v)\) is a subset of the closure of some component of \(T - \{v\}\), then there exist neighboring (adjacent) vertices \(v\) and \(w\) in \(T\) such that \(F(v) \subseteq T(v, w]\) and \(F(w) \subseteq T(w, v]\).

Proof. Let \(v_1\) be any branchpoint of \(T\) and let \(C_1\) be the component of \(T - \{v_1\}\) such that \(F(v_1)\) is a subset of \(C_1\). Let \(v_2\) be the vertex of \(C_1\) that is adjacent to \(v_1\). So, \(C_1 = T(v_1, v_2]\). If \(F(v_2) \subseteq T(v_2, v_1]\), then \(v_1\) and \(v_2\) have the desired properties. Otherwise, \(v_2\) must be a branchpoint of \(T\) and there is a component \(C_2\) of \(T - \{v_2\}\) such that \(C_2 \neq T(v_2, v_1]\) and \(F(v_2) \subseteq C_2\). Now, \(C_2 \subseteq C_1\) and \(C_2\) contains fewer branchpoints than \(C_1\). Since \(C_1\) has finitely many branchpoints, a repetition of the process above must yield adjacent vertices with the desired properties.
We introduce the following terminology. Given a sequence \(\{F_n\}_{n=1}^{\infty} \), to say that

\(\{F_n\}_{n=1}^{\infty} \) \textit{frequently} has some property means that for each positive integer \(N \), there is an integer \(n \geq N \) such that \(F_n \) has the property,

and to say that

\(\{F_n\}_{n=1}^{\infty} \) \textit{eventually} has some property means that there is a positive integer \(N \) such that if \(n \geq N \), then \(F_n \) has the property.

We are now ready for our main theorems.

Theorem 1. Suppose that \(T \) is a tree, \(X \) is \(T \)-like, and for each \(n \geq 1 \), \(g_n: X \rightarrow T \) is a \(\delta_n \)-mapping onto \(T \), where \(\{\delta_n\}_{n=1}^{\infty} \) converges to zero. If \(f: X \rightarrow X \) is a mapping, \(\{n_i\}_{i=1}^{\infty} \) is an increasing sequence of positive integers, and there are adjacent vertices \(v \) and \(w \) of \(T \) such that

\(\{g_{n_i}f_{n_i}^{-1}(v)\}_{i=1}^{\infty} \) is eventually a subset of \(T(v,w) \) and

\(\{g_{n_i}f_{n_i}^{-1}(w)\}_{i=1}^{\infty} \) is eventually a subset of \(T(w,v) \), then \(f \) has a fixed point.

Proof. Suppose that \(f \) is fixed point free. Let \(d \) denote the metric on \(X \). Assume that each edge of \(T \) has length one and let \(p \) denote the "arc length" metric on \(T \). Let \(\epsilon \) be a positive number such that \(d(x,f(x)) \geq \epsilon \) for each \(x \in X \).

Fix \(n \) large enough so that \(g_n \) is an \(\frac{\epsilon}{2} \)-mapping,

\(g_n f g_n^{-1}(v) \subseteq T(v,w) \), and \(g_n f g_n^{-1}(w) \subseteq T(w,v) \). Since \(g_n \) is
an $\varepsilon/2$-mapping, it follows that $t \not\in g_n f g_n^{-1}(t)$ for any $t \in T$. So, we have that $g_n f g_n^{-1}(v) \subseteq T(v,w)$ and $g_n f g_n^{-1}(w) \subseteq T(w,v)$.

Let $0 < \delta < 1$ such that if $d(x,y) \geq \varepsilon$, then $p(g_n(x), g_n(y)) > \delta$. That such a δ exists is easily seen (argument by contradiction).

Let V be an open set in X such that $g_n^{-1}(v) \subset V$, $\text{diam} V < \varepsilon$, and if $x \in V$, then $g_n f(x) \in T(v,w)$ and $p(g_n(x), v) < \frac{\delta}{2}$. Similarly, let W be an open set in X such that $g_n^{-1}(w) \subset W$, $\text{diam} W < \varepsilon$, and if $x \in W$, then $g_n f(x) \in T(w,v)$ and $p(g_n(x), w) < \frac{\delta}{2}$.

Pick any point q in $g_n^{-1}(w)$ and let L be the component of $X - V$ that contains q. Now, L must intersect the boundary of V at some point y. We point out that $g_n(L) \subset T(v,w)$. For if not, there is a point $x \in L$ such that $g_n(x) \in T(w,v) - (v,w)$. Also, $q \in L$ and $g_n(q) = w$. Since L is connected and g_n is continuous, it follows that there is a point of L that is also in $g_n^{-1}(v) \subset V$, a contradiction.

Let K be the component of $L - W$ that contains y. Let z be a point of the boundary of W that is also in K. As above, $g_n(K) \subset T(w,v)$. For if not, there is a point $x \in K$ such that $g_n(x) \in T(v,w) - [v,w)$. Since $y \in \overline{V}$, $g_n(y) \in T(w,v)$. Now, y is also in K; hence, there is a point of K that is also in $g_n^{-1}(w) \subset W$, a contradiction.

Since $K \subset L$, we get that $g_n(K) \subset (v,w)$. Let $R = \{x \in K | g_n(x) \text{ separates } g_n f(x) \text{ from } v \text{ in } T\}$
and

\[S = \{ x \in K | g_n(x) \text{ separates } g_n(f(x)) \text{ from } w \text{ in } T \}. \]

Clearly, \(R \cup S = K \), and \(R \) and \(S \) are disjoint open sets in \(K \). We will show that \(y \in R \) and \(z \in S \).

Suppose that \(y \notin R \). Then \(y \in S \) and \(g_n(y) \) must separate \(g_n(f(y)) \) from \(w \) in \(T \). Since \(y \in \overline{V} \), \(p(g_n(y),v) \leq \frac{\delta}{2} \)
and \(g_n(f(y)) \in \overline{T(v,w)} \). Hence, we must have that \(g_n(f(y)) \in [v,w] \) and that \(p(g_n(f(y)),g_n(y)) \leq \frac{\delta}{2} < \delta \). But, by choice
of \(\delta \), \(d(y,f(y)) \geq \varepsilon \) implies that \(p(g_n(y),g_n(f(y)) \geq \delta \), a contradiction.

A symmetric argument gives us that \(z \in S \). But then
\(K \) is not connected, which is a contradiction.

Since an arc is a tree with exactly two vertices, namely its endpoints, we get Hamilton's [5] fixed point theorem as an immediate corollary.

Corollary 1. If \(X \) is an arc-like continuum, then \(X \) has the fixed point property.

Corollary 2. Suppose that \(T \) is a simple \(k \)-od with branchpoint \(v \), \(X \) is \(T \)-like, and for each \(n \geq 1 \), \(g_n : X \to T \)
is a \(\delta_n \)-mapping onto \(T \), where \(\{ \delta_n \}_{n=1}^{\infty} \) converges to zero.
If \(f : X \to X \) is a fixed point free mapping, then
\(\{ g_n f g_n^{-1}(v) \}_{n=1}^{\infty} \) eventually intersects two components of
\(T - \{ v \} \).

Proof. Suppose that \(\{ g_n f g_n^{-1}(v) \}_{n=1}^{\infty} \) does not eventually intersect two components of \(T - \{ v \} \). Then there is
a component \(L \) of \(T - \{ v \} \) such that \(\{ g_n f g_n^{-1}(v) \}_{n=1}^{\infty} \) is
frequently a subset of L. Let e be the endpoint of T that belongs to L. Then v and e are adjacent vertices of T. Also, $(g_n f g_n^{-1}(e))_{n=1}^\infty$ is a subset of $\overline{T(e,v]}$ for all $n \geq 1$ since $T(e,v] = T - \{e\} = T$. It follows from Theorem 1 that f has a fixed point, which is a contradiction.

Corollary 3. Suppose that T is a tree, X is T-like, and for each $n \geq 1$, $g_n : X \to T$ is a δ_n-mapping onto T, where $\{\delta_n\}_{n=1}^\infty$ converges to zero. If $f : X \to X$ is a fixed point free mapping, then there is a branchpoint v of T such that $(g_n f g_n^{-1}(v))_{n=1}^\infty$ frequently intersects two components of $T - \{v\}$.

Proof. By way of contradiction, we assume that for each branchpoint v of T, there is a positive integer N_v such that if $n \geq N_v$, then $g_n f g_n^{-1}(v)$ is a subset of the closure of some component of $T - \{v\}$.

Let $N = \max\{N_v \mid v$ is a branchpoint of $T\}$ and fix $n \geq N$. We recall that if e is an endpoint of T and v is the vertex of T adjacent to e, then $g_n f g_n^{-1}(e) \subseteq \overline{T(e,v]}$. Hence, by the lemma, there exist adjacent vertices v and w in T such that $g_n f g_n^{-1}(v) \subseteq \overline{T(v,w]}$ and $g_n f g_n^{-1}(w) \subseteq \overline{T(w,v]}$. So, if $n \geq N$, we may associate with n a pair of adjacent vertices in T that have the properties above. Since there are only finitely many pairs of adjacent vertices in T, it follows that there is an increasing sequence $\{n_i\}_{i=1}^\infty$, each term of which is associated with the same pair of adjacent vertices. By Theorem 1, f has a fixed point, which is a contradiction.
Our next theorem generalizes, in the case of finite fans, the fixed point result in [7].

Theorem 2. Let T be a tree, and for each branchpoint v of T, let $(L_i(v))_{i=1}^{k_v}$ be a labeling of the components of $T - \{v\}$. If $X = \lim\{T, g_{n+1}^n\}$, where for each $n \geq 1$ and each branchpoint v of T, $g_{n+1}^n(L_i(v)) = L_i(v)$ for $2 \leq i \leq k_v$, then X has the fixed point property.

Proof. Let d denote the metric on X and, for each $n \geq 1$, let g_n be the projection mapping of X onto T. Now, X is T-like and for $\varepsilon > 0$, n can be chosen so that g_n is an ε-mapping (see [6]).

By way of contradiction, we assume that f is a fixed point free mapping on X and that ε is a positive number such that $d(x, f(x)) \geq \varepsilon$ for each $x \in X$.

Let v be any branchpoint of T. We notice that $g_{n+1}^n(v) = v$ for each $n \geq 1$. So, let p_v be the point of X such that $g_n(p_v) = v$ for each $n \geq 1$. Also, let $M_v = \bigcup_{i=2}^{k_v} L_i(v)$. We further observe that

\[(*) \text{ if } x \in X \text{ and there is an integer } N \text{ such that } g_N(x) \text{ is not in } M_v, \text{ then for } n \geq N, \ g_n(x) \notin M_v. \]

Suppose that $(*)$ is not the case. Then there is a point $x \in X$ and positive integers N and n with $n \geq N$ such that $g_N(x) \notin M_v$ but $g_n(x) \in M_v$. However, this implies that $g_N(x) = g_{n+1}^n(x) \in M_v$, which is a contradiction.
Hence, by (*) and the fact that $g_{n+1}^{n+1}(M_v) \subseteq M_v$ for each $n \geq 1$, we may choose a positive integer m such that g_m is an ε-mapping and so that either

i) $g_n(f(p_v)) \in L_1(v)$ for $n \geq m$ or

ii) $g_n(f(p_v)) \in M_v$ for $n \geq m$.

Note that $g_n(f(p_v)) \neq v$, for $n \geq m$, since g_m is an ε-mapping and $v = g_n(p_v)$. Since $g_{n+1}^{n+1}(L_1(v)) = L_1(v)$ for $n \geq 1$ and $2 \leq i \leq k_v$, it follows that if $g_n(f(p_v)) \in M_v$ for $n \geq m$, then there is an integer $2 \leq j \leq k_v$ such that $g_n(f(p_v)) \in L_j(v)$ for $n \geq m$. So, in fact, we have that there is an integer $1 \leq i \leq k_v$ such that $g_n(f(p_v)) \in L_i(v)$ for $n \geq m$.

Let δ be a positive number such that if $x \in X$ and $d(x, p_v) < \delta$, then $g_m f(x) \in L_1(v)$. Let $n \geq m$ and large enough so that g_n is a δ-mapping. Since $p_v \in g_{n-1}^{-1}(v)$ and $\text{diam}(g_{n-1}(v)) < \delta$, it follows that if $x \in g_{n-1}^{-1}(v)$, then $d(x, p_v) < \delta$ and $g_m f(x) \in L_1(v)$. Thus, $g_m f g_{n-1}^{-1}(v) \subseteq L_1(v)$. Now, if $i = 1$, then by (*), $g_m f g_{n-1}^{-1}(v) \subseteq L_1(v)$. If $i \neq 1$, we get that $g_m f g_{n-1}^{-1}(v) \subseteq L_1(v) \cup L_i(v)$.

We have shown that for each branchpoint v of T, there is a positive integer m_v and an integer $1 \leq i_v \leq k_v$ such that for $n \geq m_v$,

1) $g_n(f(p_v)) \in L_{i_v}(v)$, and

2) $g_n f g_{n-1}^{-1}(v) \subseteq L_1(v) \cup L_{i_v}(v)$.

Let $N = \max(m_v \mid v$ is a branchpoint of $T)$. For $n \geq N$, and v a branchpoint of T, let

$$F_n(v) = \begin{cases} g_n f_{g_n}^{-1}(v) & \text{if } g_n f_{g_n}^{-1}(v) \text{ intersects only one of } \\ g_n f_{g_n}^{-1}(v) \cap L_1(v) & \text{otherwise.} \end{cases}$$

For $n \geq N$ and e an endpoint of T, let $F_n(e) = g_n f_{g_n}^{-1}(e)$.

By our lemma, for each $n \geq N$, there are adjacent vertices v and w of T such that $F_n(v) \subseteq T(v,w)$ and $F_n(w) \subseteq T(w,v)$. By the finiteness of the set of all pairs of adjacent vertices in T, we can pick an increasing number sequence $\{n_i\}_{i=1}^{\infty}$ and a pair of adjacent vertices v and w such that for each $i \geq 1$, $F_{n_i}(v) \subseteq T(v,w)$ and $F_{n_i}(w) \subseteq T(w,v)$. Let \leq be a partial order on T that is consistent with the metric on T and such that v is the least element of $T(v,w)$ and w is the maximum element of $T(w,v)$.

The remainder of the proof involves three cases.

Case 1. $\{g_{n_i} f_{g_{n_i}}^{-1}(v)\}_{i=1}^{\infty}$ eventually intersects only one of $L_1(v)$ and $L_{1,v}$, and $\{g_{n_i} f_{g_{n_i}}^{-1}(w)\}_{i=1}^{\infty}$ eventually intersects only one of $L_1(w)$ and $L_{1,w}$.

In this case, by definition, $F_{n_i}(v) = g_{n_i} f_{g_{n_i}}^{-1}(v)$ and $F_{n_i}(w) = g_{n_i} f_{g_{n_i}}^{-1}(w)$ for all i beyond some integer. It follows from Theorem 1 that f has a fixed point, which is a contradiction.
Case 2. $\{g_{n_i} f g_{n_i}^{-1}(v)\}_{i=1}^{\infty}$ frequently intersects both of $L_i(v)$ and $L_{i_v}(v)$ and $\{g_{n_i} f g_{n_i}^{-1}(w)\}_{i=1}^{\infty}$ frequently intersects both of $L_i(w)$ and $L_{i_w}(w)$.

We observe that if $i_v \neq 1$ and $g_r f g_k^{-1}(v)$ intersects $L_i(v)$ for any integer r, then $g_k f g_k^{-1}(v)$ intersects $L_i(v)$ for each integer $k \leq r$. To see this, let $k \leq r$ and first notice that $g_r^{-1}(v) \subseteq g_k^{-1}(v)$ since v is fixed by all bonding mappings. Thus, $g_r f g_k^{-1}(v) \subseteq g_k f g_k^{-1}(v)$. So, there is a point x in $L_i(v) \cap g_k f g_k^{-1}(v)$. Since $i_v \neq 1$, $g_k^{-1}(x) \in L_i(v)$. Hence, $g_k^{-1}(g_r f g_k^{-1}(v)) = g_k f g_k^{-1}(v)$ intersects $L_i(v)$.

By our assumption in this case, $i_v \neq 1$ and $i_w \neq 1$. Hence, since $\{g_{n_i} f g_{n_i}^{-1}(u)\}_{i=1}^{\infty}$ frequently intersects $L_i(u)$ for $u \in \{v, w\}$, it follows from our observation in the preceding paragraph that $\{g_{n_i} f g_{n_i}^{-1}(u)\}_{i=1}^{\infty}$ intersects $L_i(u)$ for all $n \geq 1$. So, by definition, $F_n(u) \subseteq L_i(u)$ for all $n \geq 1$ and $u \in \{v, w\}$. It follows that $L_i(v) = T(v, w]$ and $L_i(w) = T(w, v]$. Hence, for each $n \geq 1$, $g_{n+1}^{n+1}(T(v, w]) = T(v, w]$ and $g_{n+1}^{n+1}(T(w, v]) = T(w, v]$. It follows that for $n \geq 1$, $g_{n+1}([v, w]) = [v, w]$.

Let $C = \lim \{[v, w], g_{n+1}^{n+1}|[v, w]\}$. Now, C is an arc-like continuum containing the points p_v and p_w. Recall that for each $n \geq n_v$, $g_n f(p_v) \in L_i(v) = T(v, w]$ and for $n \geq n_w$, $g_n f(p_w) \in L_i(w) = T(w, v]$. Let n be large enough
so that \(n > \max\{m_v, m_w\} \) and \(g_n \) is an \(\varepsilon \)-mapping. Let
\[
R = \{ x \in C \mid g_n(x) < g_n f(x) \}
\]
and
\[
S = \{ x \in C \mid g_n(x) > g_n f(x) \}.
\]
Clearly, \(R \cup S = C \), \(R \) and \(S \) are open disjoint sets in \(C \), \(p_v \in R \), and \(p_w \in S \). But then \(C \) is not connected, which is a contradiction.

Case 3. \(\{ g_n^{-1}(v) \}_{i=1}^{\infty} \) eventually intersects only one of \(L_1(v) \) and \(L_{i_v}(v) \), and \(\{ g_n^{-1}(w) \}_{i=1}^{\infty} \) frequently intersects both of \(L_1(w) \) and \(L_{i_w}(w) \).

As in Case 2, it follows that \(i_w \neq 1 \), \(L_{i_w}(w) = T(w,v] \), and \(F_n(w) \subseteq T(w,v] \) for all \(n \geq 1 \).

Now, if \(i_v \neq 1 \) and \(\{ g_n^{-1}(v) \}_{i=1}^{\infty} \) is frequently a subset of \(L_{i_v}(v) \), then the argument beginning with the second paragraph in Case 2 applies and we are done. So, we may assume that \(\{ g_n^{-1}(v) \}_{i=1}^{\infty} \) is eventually a subset of \(L_1(v) \). Thus, for all \(i \) beyond some integer, \(F_n(v) = g_n^{-1}(v) \), and it follows that \(L_1(v) = T(v,w] \). We may choose an integer \(n \) large enough so that \(n \geq m_w \), \(g_n^{-1}(v) \subseteq \overline{T(v,w]} \), \(g_n^{-1}(w) \cap T(w,v] \neq \emptyset \), and \(g_n \) is an \(\varepsilon \)-mapping. Let \(\delta \) be a positive number such that
\[
d(x,y) \geq \varepsilon \text{ in } X \text{ implies that } p(g_n(x), g_n(y)) \geq \delta \text{ in } T.
\]
Let \(V \) be an open set in \(X \) such that \(g_n^{-1}(v) \subseteq V \), \(\text{diam} V < \varepsilon \), and if \(x \in V \), then \(g_n f(x) \in T(v,w] \) and
Let \(M = \lim_{i \to \infty} \{ \overline{T(w,v)} : g_i^{i+1} \} \), and let \(C \) be the component of \(M - V \) that contains \(p_w \). Recall that \(g_n f(p_w) \in L_i \{ w \} = T(w,v) \) since \(n \geq m \). Now, \(C \) must intersect the boundary of \(V \) at some point \(y \). We point out that \(g_n(C) \subseteq \overline{T(v,w)} \). For if not, there is a point \(x \in C \) such that \(g_n(x) \in T(w,v) - [v,w] \). Also, \(p_w \in C \) and \(g_n(p_w) = w \).

Since \(C \) is connected and \(g_n \) is continuous, it follows that there is a point of \(C \) that is also in \(g_n^{-1}(v) \subseteq V \), a contradiction.

Furthermore, \(g_n(C) \subseteq \overline{T(w,v)} \) simply because \(C \subseteq M \).

It follows that \(g_n(C) \subseteq [v,w] \). Let
\[
R = \{ x \in C \mid g_n(x) < g_n f(x) \}
\]
and
\[
S = \{ x \in C \mid g_n(x) > g_n f(x) \}.
\]
Clearly, \(R \cup S = C \), and \(R \) and \(S \) are disjoint open sets in \(C \). We will show that \(y \in R \) and \(p_w \in S \).

Now, \(p_w \in S \) since \(g_n(p_w) = w \) and \(g_n f(p_w) \in T(w,v) \).

Suppose \(y \notin R \). Then \(y \in S \) and \(g_n(y) > g_n f(y) \).

Since \(y \in V \), \(p(g_n(y),v) \leq \frac{\delta}{2} \), and \(g_n f(y) \in \overline{T(v,w)} \). Hence, we must have that \(g_n f(y) \in [v,w] \) and that \(p(g_n f(y),g_n(y)) \leq \frac{\delta}{2} < \delta \). But by choice of \(\delta \), \(d(y,f(y)) \geq \epsilon \) implies that \(p(g_n(y),g_n f(y)) \geq \delta \), a contradiction.

But now we have that \(C \) is not connected, which is a contradiction.
References

California State University
Sacramento, California 95819-6051