A DECOMPOSITION THEOREM FOR
\(\Sigma^* \)-SPACES

by

Shou Lin
A DECOMPOSITION THEOREM FOR
Σ^*-SPACES

SHOU LIN*

Abstract. In this note it is shown that if f is a continuous closed mapping from a T_1, Σ^*-space X onto Y, then there is a σ-closed discrete subspace Z of Y such that $f^{-1}(y)$ is an ω_1-compact subspace of X for each $y \in Y \setminus Z$.

We assume that all spaces are T_1, and all mappings are continuous and onto.

In 1985, Y. Tanaka and Y. Yajima [4] obtained a decomposition theorem for Σ-spaces that every Σ-space X satisfies the following condition (*).

(*) If f is a closed mapping form X onto Y, then there is a σ-closed discrete subspace Z of Y such that $f^{-1}(y)$ is an ω_1-compact subspace of X for each $y \in Y \setminus Z$.

J. Chaber [1] constructed a counterexample to show that Σ^*-spaces are not always satisfying the above condition (*). Since Σ-spaces are Σ^*-spaces, and Σ^*-spaces are Σ^*-spaces, it is a natural question whether Σ^*-spaces satisfy(*). Y. Tanaka and Y. Yajima [4] obtained only a weak form of decomposition theorem for Σ^*-spaces. The purpose of this note is to prove that Σ^*-spaces satisfy(*).

Recall basic definitions concerning Σ^*-spaces. Suppose that P is a collection of subsets of a space X. P is called hereditarily closure-preserving (abbr. HCP) if $\{H(P); P \in P\}$ is closure-preserving for every subset $H(P) \subseteq P \in P$. A space X is called a Σ^*-space (or, strong Σ^*-space) [3] if there is a covering \mathcal{K} of X by closed countable compact subsets (or, closed compact

*Partly supported by the National Natural Science Foundation of China.
subsets) and a σ-HCP collection \mathcal{P} of closed subsets of X such that whenever $K \subset U$ with $K \in \mathcal{K}$ and U open in X, then $K \subset P \subset U$ for some $P \in \mathcal{P}$. The \mathcal{P} is called a σ-HCP closed (mod \mathcal{K})-network for X.

Lemma (4, Lemma 1.1) If \mathcal{P} is an HCP collection of subsets of X, then

$$\{P_1 \cap P_2 \ldots \cap P_n; P_i \in \mathcal{P}, i \leq n\}$$

is also HCP in X for each $N \in N$.

Theorem Σ^*-spaces satisfy (\ast).

Proof. Suppose that f is a closed mapping from a Σ^*-space X onto Y. Let \mathcal{K} be a covering of X by closed countable compact subsets, and let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in N\}$ be a σ-HCP closed (mod \mathcal{K})-network for X, where each \mathcal{P}_n is HCP in X. Here we can assume that \mathcal{P} is closed under finite intersections by Lemma, and $X \in \mathcal{P}_n \subset \mathcal{P}_{n+1}$. For each $n \in N$, put

$$D_n = \{x \in X : \mathcal{P}_n \text{ is not point-finite at } x\},$$

then

1. D_n is a σ-closed discrete subspace of X. In fact, for each $m \in N$, put

$$E_m = \{x \in X : \cap \{P \in \mathcal{P}_m : x \in P\} = \{x\}\},$$

then E_m is a closed discrete subspace of X by [3, Lemma 2.5]. It is not difficult to check that $D_n \subset \bigcup \{E_m : m \in N\}$ (cf.[2]), hence D_n is σ-closed discrete in X. Put

$$\mathcal{Q}_n = \{P \setminus D_n : P \in \mathcal{P}_n\},$$

and

$$\mathcal{Q} = \bigcup \{\mathcal{Q}_n : n \in N\},$$

then

2. There are $m \geq n, F \in \mathcal{Q}_m$, and $G \subset D_m$ with $\cap \mathcal{F} = F \cup G$ for each finite $\mathcal{F} \subset \mathcal{Q}$ and $n \in N$.

In fact, let $\mathcal{F} = \{F_i : i \leq k\} \subset \mathcal{Q}$, we might as well grant $\cap \mathcal{F} \neq \emptyset$, and there are $n_i \in N, P_i \in \mathcal{P}_{n_i}$ with $F_i = P_i \setminus D_{n_i}$ and $n_i \leq n_{i+1}$, then $\cap \mathcal{F} = \cap \{P_i : i \leq k\} \setminus D_{n_k}$, and $\cap \{P_i : i \leq k\} \setminus D_{n_k}$.
\[k = P \text{ for some } m \geq \max \{ n_k, n \}, P \in \mathcal{P}_m \] because \(\mathcal{P} \) is closed under finite intersections. Put
\[
F = P \setminus D_m, \quad \text{and} \quad G = P \cap (D_m \setminus D_{n_k}),
\]
then \(F \in \mathcal{Q}_m, G \subseteq D_m \) and \(\cap \mathcal{F} = F \cup G. \)

For each \(n \in \mathbb{N}, \) put
\[
Z_n = f(D_n) \cup \left(\bigcup \{ f(Q) \cap f(Q') : Q, Q' \in \mathcal{Q}_n, \right.
\]
\[
\left. \text{and } F(Q) \cap f(Q') \text{ is finite} \}\right).
\]

Since \(\mathcal{Q}_n \) is HCP in \(X, \) \(\{ f(Q) : Q \in \mathcal{Q}_n \} \) is HCP in \(Y. \) Thus \(Z_n \) is \(\sigma \)-closed discrete in \(Y \) by (1) and Lemma. Put
\[
Z = \cup \{ Z_n : n \in \mathbb{N} \},
\]
then \(Z \) is \(\sigma \)-closed discrete in \(Y. \) Take a \(y \in Y \setminus Z, \) then
\[(3) \{ Q \in \mathcal{Q}_n : Q \cap f^{-1}(y) \neq \emptyset \} \text{ is finite.} \]

Assume the contrary, then there is an \(m \in \mathbb{N} \) and a sequence \(\{ Q_n \} \) of distinct members of \(\mathcal{Q}_m \) such that \(Q_n \cap f^{-1}(y) \neq \emptyset. \)

Pick an \(x \in f^{-1}(y), \) then \(x \notin X \setminus D_n \) for each \(n \in \mathbb{N}, \) put
\[
R_n = \cap \{ Q \in \mathcal{Q}_n : x \in Q \}. \]

Since \(\mathcal{Q}_n \) is point-finite on \(X \) there are a \(k_n \in \mathbb{N}, F_n \in \mathcal{Q}_{k_n} \)
and \(G_n \subseteq D_{k_n} \) with \(m \leq k_n < k_{n+1} \) and \(R_n = F_n \cup G_n \) by (2).

Put
\[
F'_n = Q_n \setminus D_{k_n}, \quad G'_n = Q_n \cap D_{k_n},
\]
then \(F'_n \in \mathcal{Q}_{k_n}, G'_n \subseteq D_{k_n}, \) and \(Q_n = F'_n \cup G'_n. \) Since \(y \in f(R_n) \cap f(Q_n) \setminus Z = f(F_n) \cap f(F'_n) \setminus Z, f(F_n) \cap f(F'_n) \) is an infinite set. So we can choose a sequence \(\{ y_n \} \) of distinct points in \(Y \)
such that \(y_n \in f(F_n) \cap f(F'_n). \) Pick \(p_n \in F_n \cap f^{-1}(y_n), \) and \(q_n \in F'_n \cap f^{-1}(y_n). \)

Suppose that the sequence \(\{ p_n \} \) has not any cluster point in \(X. \) Take a \(K \in \mathcal{K} \) with \(x \in K, \) then there is an \(i \in \mathbb{N} \) such that
\(K \cap \{ p_n : n \geq i \} = \emptyset, \) thus \(x \in K \subseteq P \subseteq X \setminus \{ p_n : n \geq i \} \) for some \(j \geq i, P \in \mathcal{P}_j. \) Since \(y \in Y \setminus Z, x \notin D_j, \) then \(x \in P \setminus D_j \in \mathcal{Q}_j, \) hence \(R_j \subseteq P \setminus D_j, \) so \(p_j \in F_j \subseteq R_j \subseteq P \setminus D_j \subseteq X \setminus \{ p_n : n \geq i \}, \) a contradiction. Consequently, the sequence \(\{ p_n \} \) has a cluster point in \(X, \) and the sequence \(\{ y_n \} \) also has a cluster.
point in Y. On the other hand, since $q_n \in F'_n \subset Q_n \in Q_m$ for each $n \in N$, the sequence $\{q_n\}$ has not any cluster point in X so the sequence $\{y_n\}$ has not any cluster point in Y either, a contradiction. (3) holds. By

$$y \in Y \setminus Z, f^{-1}(y) \subset X \setminus \{D_n : n \in N\},$$

thus

$$\{f^{-1}(y) \cap P : P \in \mathcal{P}\} = \{f^{-1}(y) \cap Q : Q \in \mathcal{Q}\},$$

therefore it is a countable closed (mod \mathcal{K}')-network from (3), where $\mathcal{K}' = \mathcal{K}_{f^{-1}(y)}$. Hence $f^{-1}(y)$ is an ω_1-compact subspace of X by [4, Lemma 1.2].

Corollary If f is a closed mapping from a strong Σ^*-space X onto Y, then there is a σ-closed discrete subspace Z of Y such that $f^{-1}(y)$ is Lindelöf for each $y \in Y \setminus Z$.

Proof. An ω_1-compact strong Σ^*-space is a space with a countable (mod \mathcal{K})-network with respect to \mathcal{K} by compact subsets. A space with a countable (mod \mathcal{K})-network with respect to \mathcal{K} by compact subsets is Lindelöf.

References

Ningde Teachers’ College
Ningde, Fujian 352100
P.R. China