METRIZABLE GENERALIZED ORDER SPACES

E.C. MILNER1 AND SHANGZHI WANG2

ABSTRACT. In 1971 D.J. Lutzer [10] proved a metrization theorem for generalized order topological spaces (GO-spaces) which says that, if X is a p-embedded subspace of a linear ordered topological space, then X is metrizable if and only if it has a G_d-diagonal. After stating this theorem, he raised the question whether there is any larger class of GO-spaces than the p-embedded subspaces of linear ordered topological spaces for which the G_d-diagonal metrization theorem is true. In this paper we answer this question negatively by proving the following result. If (X, \leq, τ) is a metrizable GO-space and d is a metric on X which is compatible with the topology τ, then there is a metrizable linear ordered topological space (Y, \leq_Y, λ) and a metric d^* compatible with λ such that (i) (X, \leq) is a subordered set of (Y, \leq_Y), (ii) d^* is equivalent to d on X (equal if d is bounded), and (iii) (X, τ) is a p-embedded closed subspace of (Y, λ).

1. INTRODUCTION

Let (X, \leq) be a linearly ordered set. We denote by

$$X(< a) = \{x \in X : x < a\} \quad \text{and} \quad X(> a) = \{x \in X : x > a\}$$

the open intervals determined by the element $a \in X$, and as usual (a, b) denotes the open interval $X(> a) \cap X(< b)$. We also write $X(\leq a) = X(< a) \cup \{a\}$, and $X(\geq a)$ is similarly

1Research supported by NSERC grant #69-0982.

2This paper was written while the second author was a Visiting Scholar at the University of Calgary.
defined. The *linear order topology*, \(\lambda \), on \(X \) has for a subbasis the family of intervals

\[
B = \{X\} \cup \{X(< a) : a \in X\} \cup \{X(> a) : a \in X\}.
\]

A subspace of a linear ordered topological space (LOTS) is not, in general, a LOTS. For example, \(\mathbb{R} \), the real line with the natural ordering is a LOTS, but the subspace \(X = \{0\} \cup \{x : |x| > 1\} \) is not since \(\{0\} \) is an open set in the induced topology on \(X \), but not in the linear order topology on \(X \). A topology \(\tau \) on the linearly ordered set \((X, \leq)\) is called a *generalized order topology* on \(X \), briefly we say \((X, \leq, \tau)\) is a GO-space, if \(\tau \) extends the order topology and has a base of order-convex sets. An equivalent formulation, and the one we shall use, is that there are two subsets \(L, R \) of \(X \) such that, if \(a \in L \) then \(a \) is not the maximum element of \(X \) and \(X(\leq a) \) is open, and if \(a \in R \) then \(a \) is not the minimal element of \(X \) and \(X(\geq a) \) is open, and

\[
B \cup \{X(\leq a) : a \in L\} \cup \{X(\geq a) : a \in R\}
\]

is a subbasis for \(\tau \). A subspace of a LOTS is a GO-space.

A topology \(\tau \) on a set \(X \) is *metrizable* if there is a metric on \(X \) giving the same open sets. As an example, consider the metric space \((\mathbb{R}, d)\) on the real line illustrated in Diagram 1. In the diagram the segments \(A, B, C, D \) represent respectively the subintervals of the real line \((-\infty, 0], (0, 1], (1, 2], (2, \infty)\).
The metric is not the usual one for the real line, but the one induced by the distance in the plane. So, for example, the distance between the points ε and $2 + \varepsilon$ is 2ε (if $0 < \varepsilon < 1$). Of course, this generalized order space (in which $L = \{0, 1, 2\}$ and $R = \emptyset$) is equivalent to that induced by the usual metric on \mathbb{R} by the subspace $(-\infty, 0] \cup (1, 2] \cup (3, 4] \cup (5, \infty)$. In general, the structure of a GO-space is rather more complex.

During the last twenty years or so several papers have been written on the theory of LOTS and GO-spaces, and in particular about the metrization problem for such spaces. The first result in this direction was by V.V. Fedorčuk [7] who proved that a LOTS with a σ-locally countable base is metrizable. Then G. Creede [4] proved that a semi-stratifiable LOTS is metrizable. Shortly afterwards, D.J. Lutzer [9] generalized Creede's result by showing that a LOTS is metrizable if and only if it has a G_δ-diagonal, in other words if $\Delta = \{(x, x) : x \in X\}$ is a G_δ-set in the product space $X \times X$; of course, any metric space has a G_δ-diagonal. Also, M.J. Faber [5] used some classical theorems of R.H. Bing to obtain metrization theorems for LOTS.

D.J. Lutzer [10] was the first to consider subspaces of LOTS, i.e. GO-spaces, and he established the following sufficient condition for a subspace of a LOTS to be metrizable.

Theorem 1.1. Let (Y, \leq, λ) be a LOTS and let τ be the relative topology on a p-embedded subspace X. If (X, τ) has a G_δ-diagonal, then (X, τ) is metrizable.

Recall that the space X is a p-embedded subspace of Y if there is a sequence $(\mathcal{U}(n) : n < \omega)$ of covers of X by open subsets of Y such that, for each $x \in X$,

$$\bigcap_{n<\omega} \text{St}(x, \mathcal{U}(n)) \subseteq X,$$

where $\text{St}(x, \mathcal{U}(n)) = \bigcup\{U \in \mathcal{U}(n) : x \in U\}$.

M.J. Faber [5], [6], J.M. van Wouwe [12], [13], and H. Bennett & D.J. Lutzer [1] obtained various necessary and sufficient conditions for a GO-space to be metrizable, and H. Bennett in
used some of these results to give another proof of an observation of S. Purisch ([11] Propositions 2.4 and 2.5) that there is a metric ρ on the GO-space (X, \leq, τ) which is compatible with the topology τ and respects the order in the sense that

$$x \leq y \leq z \Rightarrow \rho(x, y) \leq \rho(x, z).$$

(Note that the metric on \mathbb{R} described in diagram 1 does not respect the order.) More recently, H. Bennett [3] improved Lutzer's theorem by proving that a LOTS with an S_δ-diagonal is metrizable.

In this paper we settle a question raised by D.J. Lutzer in [10]. After the statement of Theorem 1.1 in [10], Lutzer remarked that he did not know of any class of GO-spaces larger than the p-embedded subspaces of LOTS for which the G_δ-metrization theorem is true. We show that there is no larger class. In other words, if (X, \leq, τ) is a metrizable GO-space, there is some LOTS Y such that X is a p-embedded induced subspace. In fact, there is a metrizable LOTS Y. We prove the following theorem.

Theorem 1.2. If (X, \leq, τ) is a metrizable generalized order space with metric d, then there is a metrizable LOTS (Y, \leq, λ) with metric d^* such that (i) $\leq_X = \leq_Y |X \times X$, (ii) d^* is equivalent to d on X (equal to d on X if d is bounded), and (iii) X is a p-embedded closed subspace of Y.

As a corollary of Theorems 1.1 and 1.2 we have a necessary and sufficient condition for a GO-space to be metrizable.

Theorem 1.3. A GO-space is metrizable if and only if it is a p-embedded closed subspace of a metrizable LOTS.

2. ARC-CONNECTED EXTENSION OF A METRIC SPACE

In order to prove Theorem 1.2 we need a result about arc-connected metric spaces. A topological space (X, τ) is arc-connected if for any two distinct points $a, b \in X$ there is a homeomorphic map $f : [0,1] \to X$ such that $f(0) = a$.
and \(f(1) = b \). The following theorem shows that a metric space can be isometrically embedded in an arc-connected metric space. In fact, for our application we shall require the result for pseudo-metric spaces, i.e. when the metric \(d : X \times X \to \mathbb{R} \) is non-negative, symmetric and satisfies the triangle inequality, but we do not insist that \(d(x, y) = 0 \Rightarrow x = y \). Of course, if \((X, d)\) is a pseudo-metric space and we define an equivalence relation \(\sim \) on \(X \) by \(x \sim y \iff d(x, y) = 0 \), then \(X/\sim \) is a metric space with the induced metric. Theorem 2.1 is proven in ([8, page 81]) for bounded metric spaces (which is the essential content). We give the details of the proof since we require the result for pseudo-metrics and we continue to use the notation introduced in the proof.

Theorem 2.1. If \((X, d)\) is a (pseudo-)metric space, then there is an arc-connected (pseudo-)metric space \((X^*, d^*)\) such that \((X, d)\) can be isometrically embedded into \((X^*, d^*)\).

Proof: Let \(< \) be a linear ordering of \(X \). For distinct elements \(a, a' \in X \) with \(a < a' \) we introduce a copy of the open unit interval \(I(a, a') = \{ x \in (a, a') : 0 < \lambda < 1 \} \); we also define \(x_0(a, a') = a \) and \(x_1(a, a') = a' \). We assume that \(I(a, a') \cap I(b, b') = \emptyset \) if \((a, a') \neq (b, b') \), and define \(X^* = X \cup \{ I(a, b) : a, a' \in X, a < a' \} \). We define a (pseudo-)metric \(d^* \) on \(X^* \) by setting, for \(x = x_\lambda(a, a') \) and \(y = x_\mu(b, b') \),

\[
d^*(x, y) = \begin{cases} |\lambda - \mu|d(a, a') & \text{if } (b, b') = (a, a') \\ \lambda'\mu'd(a, b) + \lambda\mu'd(a, b') + \lambda\mu'd(a', b') & \text{if } (b, b') \neq (a, a') \end{cases}
\]

where we have written \(\lambda' = 1 - \lambda \), \(\mu' = 1 - \mu \).

It is easy to check that \(d^* \) is unambiguously defined. For example, using the second line of the definition to compute the distance \(d^*(x_\lambda(a, a'), a) = d^*(x_\lambda(a, a'), x_1(c, a)) \), where \(c \neq a \), we get (since \(\mu = 1, \mu' = 0 \))

\[
\lambda'd(a, a) + \lambda d(a', a) = \lambda d(a, a'),
\]
and this is the same as the value that we obtain using the first line.

Note that, if \(b \in X \), then
\[
d^*(x_\lambda(a, a'), b) = \lambda'd(a, b) + \lambda d(a', b).
\]
Also, if \((a, a') \neq (b, b')\) then
\[
d^*(x_\lambda(a, a'), x_\mu(b, b')) = \lambda'd^*(a, x_\mu(b, b')) + \lambda d^*(a', x_\mu(b, b'))
\]
\[
(2) = \mu d^*(x_\lambda(a, a'), b') + \mu' d^*(x_\lambda(a, a'), b).
\]

To show that \(d^*\) is a (pseudo-) metric is a little tedious. It is obvious that \(d^*\) is symmetric. Also, if \(d\) is a metric, then \(d^*(x, y) = 0 \iff x = y\). We have to check that the triangle inequality holds.

Case 1: If \(x = x_\lambda(a, a'), y = x_\mu(a, a'), z = x_\nu(a, a')\), it is obvious that \(d^*(x, z) \leq d^*(x, y) + d^*(y, z)\).

Case 2: Let \(x = x_\lambda(a, a'), y = x_\mu(b, b'), z = x_\nu(c, c')\), where \((a, a'), (b, b')\) and \((c, c')\) are all different. We have
\[
d^*(x, y) = (\lambda'\mu'\nu d(a, b) + \lambda'\mu d(a, b')) + \lambda d(a', b'))(\nu + \nu')
\]
\[
\leq \lambda'\mu'\nu'(d(a, c) + d(b, c)) + \lambda'\mu'\nu'(d(a, c') + d(b, c'))
\]
\[
+ \lambda'\mu'\nu'(d(a', c) + d(b', c)) + \lambda'\mu'\nu'(d(a', c') + d(b', c'))
\]
\[
+ \lambda\mu\nu'(d(a', c) + d(b', c)) + \lambda\mu\nu'(d(a', c') + d(b', c'))
\]
\[
= (\lambda'\nu d(a, c) + \lambda'\nu' d(a', c) + \lambda'\nu d(a, c') + \lambda'\nu' d(a', c'))
\]
\[
+ \mu'\nu d(b, c) + \mu'\nu' d(b', c) + \mu'\nu d(b, c') + \mu'\nu' d(b', c')
\]
\[
= d^*(x, z) + d^*(y, z).
\]

Case 3: Let \(x = x_\lambda(a, a'), y = x_\mu(a, a'), z = x_\nu(c, c')\), where \((a, a')\) and \((c, c')\) are different. We need to verify that the following two inequalities hold:

\[
(3) d^*(x, y) \leq d^*(x, z) + d^*(y, z)
\]
\[
(4) d^*(y, z) \leq d^*(x, y) + d^*(x, z).
\]
First we show that (3) and (4) hold in the special case when
\(\lambda = 0, \mu = 1 \), i.e. when \(x = a, y = a' \). For these special values we have

\[
\begin{align*}
d(a, a') & \leq \nu(d(a, c') + d(a', c')) + \nu'(d(a, c) + d(a', c)) \\
& = d^*(a, z) + d^*(a', z),
\end{align*}
\]

and

\[
\begin{align*}
d^*(a', z) & = \nu'd(a', c) + \nu d(a', c') \\
& \leq \nu'(d(a, a') + d(a, c)) + \nu(d(a, a') + d(a, c)) \\
& = d(a, a') + d^*(a, z).
\end{align*}
\]

(3) and (4) follow from these special cases. For (3) we may assume that \(\lambda < \mu \). Then, since \(\mu - \lambda \leq \min\{\mu + \lambda, \mu' + \lambda'\} \), it follows that

\[
\begin{align*}
d^*(x, y) & = (\mu - \lambda)d(a, a') \leq (\mu - \lambda)(d^*(a, z) + d^*(a', z)) \\
& \leq (\mu' + \lambda')d^*(a, z) + (\mu + \lambda)d^*(a', z) \\
& = (\mu' + \lambda')(\nu'd(a, c) + \nu d(a, c')) + (\mu + \lambda)(\nu'd(a', c) + \nu d(a', c')) \\
& \quad + \nu d(a', c') \\
& = (\lambda'\nu'd(a, c) + \lambda\nu d(a', c) + \lambda'\nu d(a, c') + \lambda\nu d(a', c')) \\
& \quad + (\mu'\nu'd(a, c) + \mu\nu d(a', c) + \mu'\nu d(a', c') + \mu\nu d(a', c')) \\
& = d^*(x, z) + d^*(y, z).
\end{align*}
\]

This proves (3). We prove (4) under the same assumption that \(\lambda < \mu \) (the case when \(\mu < \lambda \) is similar). By (2), we have

\[
\begin{align*}
d^*(y, z) & = \mu'd^*(a, z) + \mu d^*(a', z) \\
& = (\mu - \lambda)d^*(a', z) + \lambda d^*(a', z) + \mu'd^*(a, z) \\
& \leq (\mu - \lambda)(d^*(a, a') + d^*(a, z)) + \lambda d^*(a', z) + \mu'd^*(a, z) \\
& = (\mu - \lambda)d^*(a, a') + \lambda'd^*(a, z) + \lambda d^*(a', z) \\
& = d^*(x, y) + d^*(x, z).
\end{align*}
\]

Clearly the space \((X^*, d^*)\) is an arc-connected isometric extension of \((X, d)\). For example, if \(x = x_\lambda(a, a') \), \(y = x_\mu(b, b') \), where \((a, a') \neq (b, b')\) and \(a < b \), then there is a homeomorphic
map $f : [0, 1] \rightarrow \{x_\nu(a, a') : \nu \leq \lambda\} \cup I(a, b) \cup \{x_\mu(b, b') : \mu \leq \mu\}$ with $f(0) = x$, $f(1) = y$. □

We call the (pseudo-)metric space (X^*, d^*) constructed in the theorem the arc-connected extension of (X, d). It should be noted that the linear ordering imposed upon X in the proof was no more than a notational convenience, the construction of (X^*, d^*) does not depend upon this ordering. In the case when (X, d) is a pseudo-metric space, then so also is (X^*, d^*). But in this case it is clear from our definitions that, if $a, a', b, b' \in X$, $a \neq a'$, $b \neq b'$, then:

1. If $d(a, a') = 0$ and $x, y \in I(a, a')$, then $d^*(x, y) = 0$.
2. If $d(a, a') = d(a, b) = d(a', b') = 0$, $x \in I(a, a')$, $y \in I(b, b')$, then $d^*(x, y) = 0$.
3. If $d(a, a') = 0$, $x \in I(a, a')$, $y \in I(b, b')$ and $d^*(a, y) > 0$, then $d^*(x, y) > 0$.

Corollary 2.2. If (X^*, d^*) is the arc-connected extension of the pseudo-metric space (X, d), and if $d(a, a') \neq 0$ and $x \in I(a, a')$, then there is $r > 0$ such that $B^*(x, r) = \{y \in X^* : d^*(x, y) < r\} \subseteq I(a, a')$.

Proof: Let $x = x_\lambda(a, a')$, where $0 < \lambda < 1$. Choose r so that $0 < r < r' < \min\{\lambda d(a, a'), \lambda' d(a, a')\}$. Then $d^*(a, x) > r$, $d^*(a', x) > r$. Also, if $y = x_\mu(b, b')$, where $(b, b') \neq (a, a')$, then

$$d^*(x, y) = \lambda' \mu'd(a, b) + \lambda \mu'd(a', b') + \lambda \mu'd(a', b) + \lambda \mu d(a', b')$$
$$\geq (\mu'(d(a, b) + d(a', b')) + \mu(d(a, b'))$$
$$+d(a', b'))r'/d(a, a') \geq r' > r,$$

and the result follows. □

From Corollary 2.2 we immediately obtain the following fact.

Corollary 2.3. Let (X, d) be a pseudo-metric space with arc-connected extension (X^*, d^*). Let $X' \subseteq X$ be a set such that $\{a, a'\} \cap X' \neq \emptyset$ whenever $a \neq a'$ and $d(a, a') = 0$, and let $\hat{X} = \bigcup\{I(a, a') : a \neq a' \in X, d(a, a') = 0\}$. Then $d^*(x, y) > 0$
for \(x \neq y \) and \(x, y \in X^{**} = X^* (X' \cup \hat{X}) \), i.e the subspace \(X^{**} \) is a metric space.

We conclude this section with the observation that the arc-connected extension of a metric space reflects completeness.

Theorem 2.4. A metric space is complete if and only if its arc-connected extension is complete.

Proof: Let \((X^*, d^*)\) be the arc-connected extension of the metric space \((X, d)\). Suppose \(X^*\) is complete. Then, if \((a_n)\) is a Cauchy sequence in \(X\), there is \(x \in X^*\) such that \(a_n\) converges to \(x\). By Corollary 2.2 it follows that \(x \in X\), and so \(X\) is complete.

Now suppose that \(X\) is complete. Let \((y_n)\) be a Cauchy sequence in \(X^*\), \(y_n = x_{\lambda_n}(a_n, b_n)\). We need to show that some subsequence of \((y_n)\) converges. Suppose \(\liminf \lambda_n = 0\); we can assume that \(\lambda_n \to 0\). Since \(d^*(a_n, y_n) \to 0\) it follows from the triangle inequality that \((a_n)\) is also Cauchy and so converges to some \(a \in X\). Since \(d^*(a_n, a)\) and \(d^*(a_n, y_n)\) both converge to 0, it follows that \(y_n \to a\). A similar argument applies if \(\limsup \lambda_n = 1\). Thus we may assume that (some subsequence) \(\lambda_n \to p\) where \(0 < p < 1\). By Corollary 2.2 it follows that the pairs \((a_n, b_n)\) are eventually constant, say equal to \((a, b)\). Then \(y_n \to x_p(a, b)\). \(\square\)

3. **Proof of Theorem 1.2**

Let \((X, \leq, \tau)\) be a metrizable GO-space. We may assume that the metric \(d\) on \(X\) which is compatible with \(\tau\) is bounded. Let \(L = \{x \in X : X(\leq x) \text{ is open} \} \setminus \{\max X\}, R = \{x \in X : X(\geq x) \text{ is open} \} \setminus \{\min X\}\).

If the element \(x \in X\) has an immediate successor in the ordering on \(X\), we denote its successor by \(x^+\); similarly if there is an immediate predecessor we denote it by \(x^-\). If \(x \in L\) has no immediate successor in \((X, \leq)\), then we extend the order by introducing a new element \(x^+\) which is the immediate successor of \(x\) in the extended order. Similarly, for each element of \(R\)
which has no immediate predecessor in the order on X, we introduce one which we denote by x^-. Let (X', \leq) be the extended ordered set which includes these additional elements x^+ or x^- for appropriate elements $x \in L \cup R$. Thus each element of L has an immediate successor and each element of R has an immediate predecessor in this extended order.

We define a symmetric non-negative real function $d' : X' \times X' \to \mathbb{R}$ as follows: for $x, y \in X'$,

$$d'(x, y) = \begin{cases}
 d(x, y) & \text{if } x, y \in X; \\
 \inf v \in X(> a) a < u < v \sup d(x, u) & \text{if } x \in X, a \in L, \\
 \inf v \in X(< a) v < u < a \sup d(x, u) & \text{if } y = a^+ \notin X; \\
 \inf v \in X(> a) a < u < v \sup d(u, t) & \text{if } y = a^- \notin X; \\
 \inf w \in X(< b) b < t < w \sup d(x, u) & \text{if } a, b \in L, \\
 \inf w \in X(< b) b < t < w \sup d(u, t) & \text{if } x = a^+ \notin X, \\
 \inf w \in X(< b) b < t < w \sup d(x, u) & \text{if } y = b^+ \notin X.
\end{cases}$$

There are similar definitions for $d'(a^+, b^-)$ and $d'(a^-, b^-)$ obtained by modifying the last line of the above in an obvious manner.

We first observe that

(5) \hspace{1cm} d'(x, y) > 0 \text{ if } x \in X, y \in X' \setminus X.

We only prove this for the case when $y = a^+$ for some $a \in L$ which has no immediate successor in X; the case when $y = a^-$ for some $a \in R$ is similar. Suppose $x < a$. Since $X(\leq a)$ is open and the metric d is compatible with τ, there is $r > 0$ such that $B_X(x, r) = \{ y \in X : d(x, y) < r \} \subseteq X(\leq a)$. Thus $d(x, u) \geq r$ for all $u \in X(> a)$ and since $X(> a) \neq \emptyset$ it follows that $d'(x, y) \geq r$. Now suppose that $x > a$. Since $X(> a)$ has no first element in the ordering of X, there is some $v \in X$ such that $a < v < x$. Then $X(> v)$ is an open neighbourhood of x and so there is some $r > 0$ such that $B_X(x, r) \subseteq X(> v)$. This implies that $d'(x, y) \geq r$ and (5) follows.
We now verify that d' is a pseudo-metric on X'. Since d' is symmetric by definition, we need only check that the triangle inequality

\[d'(x, z) \leq d'(x, y) + d'(y, z), \tag{6} \]

holds for distinct $x, y, z \in X'$. There are several different cases that need to be considered, but these are all rather similar, and to avoid trivial repetition when we consider a point, say x, in $X' \setminus X$ we assume $x = a^+$ for some $a \in L$.

Case 1. $x, z \in X$, $y \in X' \setminus X$.

Assume $y = a^+$ for some $a \in L$. Then, for $a < u < v$, $u, v \in X$, we have

\[
d'(x, z) = d(x, z) \leq d(x, u) + d(u, z)
\leq \sup\{d(x, u) : a < u < v\} + \sup\{d(u, z) : a < u < v\}
\]

and hence (6) holds.

Case 2. $x, y \in X$, $z \in X' \setminus X$.

Assume $z = a^+$ for some $a \in L$. For $a < u < v$, $u, v \in X$ we have

\[
d(x, u) \leq d(x, y) + d(y, u)
\]

and so, taking the supremum of both sides for $u < v$, we have

\[
\sup\{d(x, u) : a < u < v\} \leq d(x, y) + \sup\{d(y, u) : a < u < v\}.
\]

Finally taking the infimum of both sides of this for $v > a$ we get (6).

Case 3. $x \in X$; $y, z \in X' \setminus X$.

Assume $y = a^+$, $z = b^+$ for some $a, b \in L$. For $a < u < v$, $b < u' < v'$ and $u, v, u', v' \in X$ we have

\[
\begin{align*}
d(x, u') & \leq d(x, u) + d(u, u') \\
& \leq \sup\{d(x, u) : a < u < v\} \\
& \quad + \sup\{d(u, u') : a < u < v\},
\end{align*}
\]

and hence

\[
\begin{align*}
\sup\{d(x, u') : b < u' < v'\} & \leq \sup\{d(x, u) : a < u < v\} \\
& \quad + \sup\{d(u, u') : a < u < v, b < u' < v'\}.
\end{align*}
\]
Taking the infimum over \(v > a \) and \(v' > b \), (6) follows.

Case 4. \(x, z \in X' \setminus X, \ y \in X \). This is similar to Case 3.

Case 5. \(x, y, z \in X' \setminus X \).

Assume \(x = a^+, \ y = b^+, \ z = c^+ \) for some \(a, b, c \in L \). Let \(a < u < v, \ b < u' < v', \ c < u'' < v'' \). We have

\[
d(u, u'') \leq d(u, u') + d(u', u'')
\]

\[
\leq \sup \{d(u, u') : a < u < v, b < u' < v'\}
+ \sup \{d(u', u'') : b < u' < v', c < u'' < v''\},
\]

and therefore,

\[
\sup \{d(u, u'') : a < u < v, c < u'' < v''\}
\leq \sup \{d(u, u') : a < u < v, b < u' < v'\}
+ \sup \{d(u', u'') : b < u' < v', c < u'' < v''\}.
\]

Taking the infimums of the terms on the left and right sides of this inequality gives (6).

This proves that \(d' \) is a pseudo-metric on \(X' \). Unfortunately, it need not be a metric. To see this consider again the example illustrated in Diagram 1. In that example, \(L = \{0, 1, 2\} \), \(R = \emptyset \), and we have to adjoin the additional points \(0^+, 1^+ \) and \(2^+ \). The distance between the distinct points \(0^+ \) and \(2^+ \) is

\[
d'(0^+, 2^+) = \inf_{0 < \xi \leq 2} \sup \{d(\xi, 2 + \eta) : 0 < \xi < \epsilon, 0 < \eta < \epsilon\} = 0.
\]

However, by (5), the set \(Z = \{x \in X' : (\exists y \neq x) d'(x, y) = 0\} \subseteq X' \setminus X \).

By Theorem 2.1 there is an arc-connected extension \((X^*, d^*)\) of the pseudo-metric space \((X', d')\). Also, by Corollary 2.3 the subspace \(X^{**} \) is a metric space, where \(X^{**} = X^* \setminus \hat{X} \) and \(\hat{X} = \cup \{I(a, a') \cup \{a, a'\} : a \neq a' \in X', d'(a, a') = 0\} \). Here we use the same notation as in the proof of Theorem 2.1 so that \(I(a, a') = \{x_\lambda(a, a') : 0 < \lambda < 1\} \) for points \(a, a' \in X' \) with \(a < a' \).

We now show that (5) extends to the following:

\[
d^*(x, y) > 0 \text{ if } x = x_\lambda(a, a'), a \in X, 0 \leq \lambda < 1 \text{ and } y \in X^* \setminus \{x\}.
\]
For, let \(y = x_\mu(b,b') \), where \(b, b' \in X' \) and \(0 \leq \mu \leq 1 \). If \((b,b') = (a,a')\), then \(\mu \neq \lambda \) and \(d^*(x,y) = |\lambda - \mu|d'(a,a') > 0 \) by (5). Also, if \((b,b') \neq (a,a')\), then \(d^*(x,y) \geq \lambda'(\mu'd(a,b) + \mu d(a,b')) > 0 \) again by (5).

It follows from (7) that \(Y = X \cup L^* \cup R^* \) is disjoint from \(X' \), where \(L^* = \bigcup \{ I(x,x^+) : x \in L \} \), \(R^* = \bigcup \{ I(x^-,x) : x \in R \} \).

Hence the restriction of \(X^{**} \) to \(Y \) is also a metric space.

We define a linear ordering \(\leq_Y \) of \(Y \) as follows:

\[
x \leq_Y y \iff \begin{cases}
 x \leq y & \text{when } x, y \in X \\
 x \leq a & \text{when } x \in X, a \in L \text{ and } y \in I(a,a^+) \\
 x \leq a & \text{when } x \in X, a \in R \text{ and } y \in I(a^-,a) \\
 a \leq y & \text{when } y \in X, a \in L \text{ and } x \in I(a,a^+) \\
 a \leq y & \text{when } y \in X, a \in R \text{ and } x \in I(a^-,a) \\
 a \leq b & \text{when } a, b \in L \cup R, x \in I(a,a^+) \text{ or } I(a^-,a), \text{ and } y \in I(b,b^+) \text{ or } I(b^-,b) \\
 \lambda < \mu & \text{when } a \in L, x = x_\lambda(a,a^+) \\
 y = x_\mu(a,a^+) \text{ or } a \in R, x = x_\lambda(a^-,a), \\
 y = x_\mu(a^-,a)
\end{cases}
\]

It is easy to check that \(\leq_Y \) is a linear order which extends the order on \(X \), and also that, for \(a \in L \) and \(b \in R \), \(I(a,a^+) \) and \(I(b^-,b) \) are intervals in \((Y, \leq_Y)\). (As observed by the referee, the order on \(Y \) is more easily visualized if we identify \(Y \) with \([X \times \{0\}] \cup [L \times (0,1)] \cup [R \times (-1,0)] \), and then \(\leq_Y \) is just the order inherited from the lexicographic order on \(X \times (-1,1) \).)

To complete the proof of the theorem we need to show two things: (A) the metric \(d^* \) is compatible with the linear order topology on \(Y \); (B) \(X \) is a \(p \)-embedded, closed subspace of \(Y \).

Proof of (A): We first show that the linear order topology on \(Y \) is contained in the metric topology defined by the metric \(d^* \). Let \(z \in Y \) and let \(J \) be an open interval in the order topology on \(Y \) which contains \(z \). We have to show that there is \(r > 0 \) such that the open ball \(B_Y(z,r) = \{ y \in Y : d^*_Y(y,z) < r \} \) is contained in \(J \).

If \(z \in L^* \), then there is \(a \in X \) such that \(z \in I(a,a^+) \). By
Corollary 2.2 there is \(r' > 0 \) such that \(B_Y(z, r') \subseteq I(a, a^+) \) and hence there is \(r > 0 \) such that \(B_Y(z, r) \subseteq J \). Similarly if \(z \in R^* \). Thus we may assume that \(z \in X \). We need to consider several different cases.

Suppose that \(z \in L \setminus R \). Since \(J \) is an open interval of \(Y \), we may assume that \(J \cap Y(> z) \subseteq I(z, z^+) \) so that \(J \cap X \subseteq X(\leq z) \) is an open neighbourhood of \(z \) in \(X \). Since \(z \notin R \), \(\{z\} \) is not open in \(X \) and so there is some element \(b \in X(< z) \) such that \((b, z) \cap X \subseteq J \). Thus we may assume that \(J = (b, c) \), where \(b \in X \) and \(b < z < c \in I(z, z^+) \). Since the metric \(d \) is compatible with the topology \(T \) on \(X \), there is \(r_1 > 0 \) such that \(B_X(z, r_1) \subseteq J \cap X \). Also, there is \(r_2 > 0 \) such that \(B_Y(z, r_2) \cap Y(\geq z) \subseteq J \). We claim that \(B_Y(z, r) \cap X = B_X(z, r) \) we need only show that \(B_Y(z, r) \cap (X \cup I(z, z^+)) \subseteq J \).

Let \(y \in B_Y(z, r) \cap (X \cup I(z, z^+)) \). We consider only the case when \(y = x_\lambda(a, a^+) \) for some \(a \in L \) and \(0 < \lambda < 1 \); the other case when \(y = x_\lambda(a^-, a) \) for some \(a \in R \) is similar. Clearly \(a < z \) since \(B_Y(z, r) \cap Y(\geq z) \subseteq I(z, z^+) \). Suppose that \(a < b \). It follows from the definition of \(d^* \) (see Proof of Theorem 2.1) that \(d^*(y, z) = \lambda d'(a, z) + \lambda d'(a^+, z) \geq \min\{d'(a, z), d'(a^+, z)\} \). Now \(d'(a, z) = d(a, z) \geq r \) since \(B_X(z, r) \subseteq \{x \in X : b < x \leq z\} \). Also,

\[
 d'(z, a^+) = \inf_{u \in X(a)} \sup_{v \in X(>a)} \{d(z, u) : a < u < v\} \geq r.
\]

This is true since if \(b < v \), then \(\sup\{d(z, u) : a < u < v\} \geq d(z, b) \geq r \), and if \(a < v \leq b \), \(d(z, u) \geq r \) for all \(u \in X \) such that \(a < u < v \). Thus \(d^*(y, z) \geq r \). This is a contradiction and hence \(b \leq a \). It follows that \(y \in J \) since \(b \leq a <_Y y \leq_Y z \) and \(b, z \) are elements in the interval \(J \) of \(Y \).

The case \(z \in R \setminus L \) is similar. The case \(z \in L \setminus R \) is simpler since, in this case, \(\{z\} \) is open in \(X \), and we may assume that \(J \subset (z^-, z^+) \) and so there is \(r > 0 \) such that \(B_Y(z, r) \subseteq J \).

Finally, suppose that \(z \in X \setminus (L \cup R) \). Since neither \(X(\geq z) \) nor \(X(\leq z) \) is open, it follows that there are \(b, c \in J \cap X \) such that \(b < z < c \). Thus we may assume that \(J = (b, c) \). Since
(b, c) \cap X is an open neighbourhood of z in X, there is r > 0 such that $B_X(z, r) \subseteq J$. Then by a similar argument to the one above it follows that $B_Y(z, r) \subseteq J$.

We now prove the converse, that the metric topology on Y is contained in the linear order topology on Y. We have to show that, for any $z \in Y$ and $r > 0$, there are $b, c \in B_Y(z, r)$ such that $b <_Y z <_Y c$ and $x \in B_Y(z, r)$ whenever $b <_Y x <_Y c$.

If $z \in Y \setminus X$, say $z \in I(a, a^+)$ for some $a \in L$, the result is obvious since, by Corollary 2.2 there is r_1 such that $0 < r_1 < r$ and $B_Y(z, r_1) \subseteq I(a, a^+)$ and $B_Y(z, r_1)$ is an interval in (Y, \leq_Y).

Suppose $z \in X$. We only consider the case when $z \in X \setminus (L \cup R)$; the other cases are similar. Since $x \notin L \cup R$, and since the metric d on X is compatible with the generalized order topology on X, it follows that there are $r > 0$ and $b, c \in X$ such that $b < z < c$ and $\{y \in X : b \leq y \leq c\} \subseteq X \cap B_Y(z, r/2)$.

We will show that $d^*(y, z) < r$ holds for all $y \in Y$ such that $b <_Y y <_Y c$. If $y \in X$ this is clear. Suppose $y \in Y \setminus X$, say $y = x_\lambda(a, a^+)$ for some $a \in L$ and $0 < \lambda < 1$. If $a < b$ then we get the contradiction that $y <_Y b$. Therefore, $b \leq a$. Similarly, $a < c$. Hence $d(a, z) \leq r/2$. If $a^+ \in X$, then $b < a^+ \leq c$ and so $d(a^+, z) \leq r/2$; on the other hand, if $a^+ \notin X$ then $d'(a^+, z) \leq \sup\{d(z, u) : u \in X, a < u < z\} \leq r/2$. In any case, $d^*(y, z) = \lambda d(a, z) + \lambda d'(a^+, z) < r$. This completes the proof of (A).

Proof of (B): Clearly (X, τ) is a subspace of Y and it is closed since the sets $I(a, a^+) (a \in L)$ and $I(a^-, a) (a \in R)$ are open intervals of Y.

For any positive integer n let $U(n) = \{B_Y(x, \frac{1}{2n}) : x \in X\}$. Then $U(n)$ is a cover of X by open subsets of Y. Also, for $x \in X$, we have $St(x, U(n)) \subseteq B_Y(x, \frac{1}{n})$, and so $\bigcap_{n \geq 1} St(x, U(n)) \subseteq \bigcap B_Y(x, \frac{1}{n}) = \{x\} \subseteq X$. Thus X is a p-embedded closed subset of Y. This completes the proof of the theorem. \qed
REFERENCES

University of Calgary
Alberta, Canada

The Capital Normal University
100037, Beijing, P. R. of China