PAIRS OF INDECOMPOSABLE CONTINUA WHOSE PRODUCT IS MUTUALLY APOSYNDETIC

Alejandro Illanes

Abstract

In this paper we prove that if p and q are relative prime positive integers and S_p, S_q are the respective p-adic and q-adic solenoids, the their topological product $S_p \times S_q$ is mutually aposyndetic. This answers a question by Charles L. Hagopian.

1991 Mathematics Subject Classification: Primary 54F20; Secondary 54F25.

Keywords and phrases: Aposyndesis, Mutual aposyndesis, Products, Solenoids.
Introduction

A *continuum* is a compact connected metric space. A *map* is a continuous function. A continuum X is said to be *mutually aposyndetic* provided that for any two distinct points x and y in X there exist two disjoint subcontinua L and M of X such that $x \in \text{int}_X(L)$ and $y \in \text{int}_X(M)$. A continuum X is said to be *strictly non-mutually aposyndetic* if each pair of subcontinua of X which have interiors intersect. Clearly, a nondegenerate mutually aposyndetic continuum is not strictly non-mutually aposyndetic.

The concept of mutual aposyndesis was introduced by Charles L. Hagopian in [1] where he proved that, the product of two chainable continua is strictly non-mutually aposyndetic if and only if each factor is indecomposable. He also asked the question ([1, p. 622]): Is the topological product of two indecomposable compact metric continua strictly non-mutually aposyndetic?

In this paper we answer Hagopian's question in the negative by showing that the product $S_p \times S_q$ is mutually aposyndetic, where for an integer $m \geq 2$, S_m is the m-adic solenoid and p and q are relative prime.

For a discussion on the relationship between aposyndesis and products we refer the interested reader to the paper by Leland E. Rogers ([3]).

1. **$S_p \times S_q$ is mutually aposyndetic.**

For each $p = 2, 3, \ldots$, let $f^p : S^1 \to S^1$ be given by $f^p(z) = z^p$ for each $z \in S^1$ (where S^1 is the unit circle in the plane, and z^p denotes the pth power of z using complex multiplication). For a given p, let

$$ S_p = \lim\inf\{X_n, f_n\}_{n=1}^\infty, $$

where each $X_n = S^1$ and each $f_n = f^p$.
As usual S_p is called the \textit{p-adic solenoid}.

Theorem If $p, q \geq 2$ are relative prime integers, then $S_p \times S_q$ is mutually aposyndetic.

Proof: We consider S_p with the usual group structure, where the product of two elements $u = (u_1, u_2, \ldots)$ and $v = (v_1, v_2, \ldots)$ in S_p is defined by $u * v = (u_1v_1, u_2v_2, \ldots)$ and $u_n v_n$ is the product of u_n and v_n as complex numbers.

We consider the exponential map $e : E^1 \rightarrow S^1$ given by $e(t) = (\cos(t), \sin(t))$. We also consider in S^1 the metric D defined by $D(z, w) =$ the length of the shortest subarc of S^1 which joins z and w. Given $z \in S^1$ and $\epsilon > 0$, define $N(\epsilon, z) = \{w \in S^1 : D(z, w) \leq \epsilon\}$. Define $g_p : E^1 \rightarrow S_p$ by:

$$g_p(t) = (e(t), e(-\frac{t}{p^2}), e(-\frac{t}{p^3}), \ldots)$$

Given two points $z, w \in S^1$, define:

$$T(z, w) = \{(a * g_p(t), b * g_q(t)) \in S_p \times S_q : t \in E^1, a \in \rho_1^{-1}(z) \text{ and } b \in r_1^{-1}(w)\},$$

where, for each n, ρ_n (resp., r_n) is the n-th projection from the solenoid S_p (resp., S_q) into S^1.

We will prove that:

$$T(z, w) \text{ is a subcontinuum of } S_p \times S_q \ldots (1)$$

In order to prove that $T(z, w)$ is compact it is enough to show that $T(z, w)$ is the image A of the compact set $\rho_1^{-1}(z) \times r_1^{-1}(w) \times [0, 2\pi]$ under the continuous function $F((a, b, t)) = (a * g_p(t), b * g_q(t))$.

It is clear that $A \subset T(z, w)$. For proving the other inclusion, take an element $\alpha = (a * g_p(t), b * g_q(t)) \in T(z, w)$, with
Let \(t \in E^1 \), \(\rho_1(a) = z \) and \(r_1(b) = w \). Let \(k \) be an integer and let \(s \in [0, 2\pi) \) be such that \(t = s + 2k\pi \). Then \(g_p(t) = g_p(s + 2k\pi) = g_p(s) * g_p(2k\pi) \) and \(g_q(t) = g_q(s + 2k\pi) = g_q(s) * g_q(2k\pi) \), Since \(\rho_1(a * g_p(2k\pi)) = z \) and \(r_1(b * g_q(2k\pi)) = w \), we conclude that \(\alpha \in \mathcal{A} \). This completes the proof of the compactness of \(T(z, w) \).

Now, we will prove that \(T(z, w) \) is connected.

Let \(s_0, t_0 \in [0, 2\pi) \) be real numbers such that \(e(s_0) = z \) and \(e(t_0) = w \). Then the set \(G = \{(g_p(s_0) * g_p(t), g_q(t_0) * g_q(t)) \in T(z, w) : t \in E^1 \} \) is a connected subset of \(T(z, w) \). Then, in order to show that \(T(z, w) \) is connected, it will be enough to prove that \(G \) is dense in \(T(z, w) \).

Take an element \(\alpha = (a * g_p(t), b * g_q(t)) \in T(z, w) \), with \(t \in E^1 \), \(a = (a_1, a_2, \ldots) \in \rho_1^{-1}(z) \) and \(b = (b_1, b_2, \ldots) \in r_1^{-1}(w) \) and take a basic open subset \(W = [(U_1 \times \ldots \times U_m \times S^1 \times \ldots) \cap S_p] \times [(V_1 \times \ldots \times V_m \times S^1 \times \ldots) \cap S_q] \) of \(S_p \times S_q \) containing the point \(\alpha \), where \(m \geq 2 \) and \(a_n e\left(\frac{t}{p^{n-1}}\right) \in U_n \) and \(b_n e\left(\frac{t}{q^{n-1}}\right) \in V_n \) for each \(1 \leq n \leq m \).

Since \(a \in S_p, a_{m+1}^p = a_1 = z \), so \(a_{m+1} \) is a \(p^m \)-th root of \(z \). On the other hand, \(e\left(\frac{s_0}{p^m}\right) \) is another \(p^m \)-th root of \(z \). Then there is a \(p^n \)-th root \(x \) of 1 such that \(a_{m+1} = e\left(\frac{s_0}{p^m}\right)x \). Thus there exists \(i \in \{1, \ldots, p^m\} \), such that \(a_{m+1} = e\left(\frac{s_0}{p^m}\right)e\left(\frac{2\pi i}{p^m}\right) \). Similarly, there exists \(j \in \{1, \ldots, q^m\} \) such that \(b_{m+1} = e\left(\frac{t_0}{q^m}\right)e\left(\frac{2\pi j}{q^m}\right) \).

Since \(p^m \) and \(q^m \) are relative prime, there exists integers \(i_1 \) and \(j_1 \) such that \(i - j = i_1 p^m + j_1 q^m \). Let \(k = i - i_1 p^m = j + j_1 q^m \). Define \(\beta = (g_p(s_0) * g_p(t + 2\pi k), g_q(t_0) * g_q(t + 2\pi k)) \in G \).

For each \(1 \leq n \leq m \),

\[
a_n e\left(\frac{t}{p^{n-1}}\right) = a_{m+1}^{p^{m-n+1}} e\left(\frac{t}{p^{n-1}}\right) = e\left(\frac{s_0}{p^m}\right) e\left(\frac{2\pi i p^{m-n+1}}{p^m}\right) e\left(\frac{t}{p^{n-1}}\right) = e\left(\frac{s_0}{p^{n-1}}\right) e\left(\frac{t + 2\pi i}{p^{n-1}}\right).
\]
On the other hand,
\[
e^\left(\frac{s_0}{p^{n-1}}\right) e^{\left(\frac{t + 2\pi k}{p^{n-1}}\right)} = e^\left(\frac{s_0}{p^{n-1}}\right) e^{\left(\frac{t + 2\pi i p^m}{p^{n-1}}\right)} = a_n e^{\left(\frac{t}{p^{n-1}}\right)}.
\]

Thus \(e^\left(\frac{s_0}{p^{n-1}}\right) e^{\left(\frac{t + 2\pi k}{p^{n-1}}\right)} = a_n e^{\left(\frac{t}{p^{n-1}}\right)}\).

Similarly, for each \(1 \leq n \leq m\), \(e^\left(\frac{t_0}{q^{n-1}}\right) e^{\left(\frac{t + 2\pi k}{q^{n-1}}\right)} = b_n e^{\left(\frac{t}{q^{n-1}}\right)}\).

This proves that \(\beta \in W \cap G\). Thus \(G\) is dense in \(T(z, w)\).

Therefore, \(T(z, w)\) is connected.

Hence, \(T(z, w)\) is a subcontinuum of \(S_p \times S_q\).

Now, we will show that there is a homeomorphism \(h : S_p \rightarrow S_p\) such that, for each \(b \in S_p - \rho_1^{-1}(1), \rho_1(b) \neq \rho_1(h(b))\).

Fix a homeomorphism \(\gamma : S^1 \rightarrow S^1\) such that \(\gamma(1) = 1, z \neq \gamma(z)\) for each \(z \in S^1 - \{1\}\) and \(D(z, \gamma(z)) < \pi\) for every \(z \in S^1\). Consider a continuous fold \(\delta : S^1 - \{-1\} \rightarrow S^1 - \{-1\}\) of the \(p\)-th root function.

Define \(h : S_p \rightarrow S_p\) by:
\[
h(b) = (\gamma(b_1), b_2 \delta(\frac{\gamma(b_1)}{b_1}), b_3 \delta(\delta(\frac{\gamma(b_1)}{b_1})), b_4 \delta(\delta(\delta(\frac{\gamma(b_1)}{b_1}))),...),
\]

where \(b_n = \rho_n(b)\).

Clearly, \(h\) has the desired properties.

We are ready to prove that \(S_p \times S_q\) is mutually aposyndetic. Let \((a, b)\) and \((c, d)\) be two distinct points of \(S_p \times S_q\).

Since \(S_p\) and \(S_q\) are topological groups, applying a translation if necessary, we may assume that \(a = (1, 1, ...) \in S_p\) and \(c = (1, 1, ...) \in S_p\). Since \(b \neq a\) or \(c \neq d\), we may also assume that \(c \neq d\). Then there exists \(n \geq 1\) such that \(c_n \neq d_n\). Since \(S_q\) is homeomorphic to \:\{(u_n, u_{n+1}, ...) \in S_q : (u_1, u_2, ...) \in S_q\}, we may assume that \(c_1 \neq d_1\), that is \(d_1 \neq 1\). Finally, if \(b_1 = d_1\), applying the homeomorphism constructed in the paragraph
above, we may assume that $b_1 \neq d_1$. Let $\epsilon = D(d_1, b_1)/3$.

Define

$$L = [\rho_1^{-1}(N(\epsilon, 1)) \times r_1^{-1}(N(\epsilon, b_1))] \cup T(1, b_1)$$

and

$$M = [\rho_1^{-1}(N(\epsilon, 1)) \times r_1^{-1}(N(\epsilon, d_1))] \cup T(1, d_1).$$

Clearly L and M are closed subsets of $S_p \times S_q$, $(a, b) \in Int(L)$ and $(c, d) \in Int(M)$.

Since $N(\epsilon, b_1) \cap N(\epsilon, d_1) = \emptyset$, we have $[\rho_1^{-1}(N(\epsilon, 1)) \times r_1^{-1}(N(\epsilon, b_1))]$ does not intersect $[\rho_1^{-1}(N(\epsilon, 1)) \times r_1^{-1}(N(\epsilon, d_1))]$.

If there is a point $(u \ast g_p(s), v \ast g_q(s))$ in $T(1, b_1) \cap [\rho_1^{-1}(N(\epsilon, 1)) \times r_1^{-1}(N(\epsilon, d_1))]$, with $s \in E^1$, $\rho_1(u) = 1$ and $r_1(v) = b_1$, then $e(s) = \rho_1(u \ast g_p(s)) \in N(\epsilon, 1)$ and $b_1 e(s) = r_1(v \ast g_q(s)) \in N(\epsilon, d_1)$. Since $D(e(s), 1) \leq \epsilon$, then $D(b_1 e(s), b_1) \leq \epsilon$. Thus $b_1 e(s) \in N(\epsilon, b_1) \cap N(\epsilon, d_1)$, which contradicts the choice of ϵ. Therefore, $T(1, b_1)$ does not intersect $[\rho_1^{-1}(N(\epsilon, 1)) \times r_1^{-1}(N(\epsilon, d_1))]$.

Similarly, $T(1, d_1)$ does not intersect $[\rho_1^{-1}(N(\epsilon, 1)) \times r_1^{-1}(N(\epsilon, b_1))]$.

Finally, if there is a point $(u \ast g_p(s), v \ast g_q(s)) = (x \ast g_p(t), y \ast g_q(t))$ in $T(1, b_1) \cap T(1, d_1)$, where $s, t \in E^1$, $\rho_1(u) = 1 = \rho_1(x)$, $r_1(v) = b_1$ and $r_1(y) = d_1$, then $e(s) = \rho_1(u \ast g_p(s)) = \rho_1(x \ast g_p(t)) = e(t)$. Thus $b_1 e(s) = r_1(v \ast g_q(s)) = r_1(y \ast g_q(t)) = d_1 e(t)$. This implies that $b_1 = d_1$. This contradiction proves that $T(1, b_1) \cap T(1, d_1) = \emptyset$.

Therefore, $L \cap M = \emptyset$.

In order to prove that L is connected, take any point (u, v) in $\rho_1^{-1}(N(\epsilon, 1)) \times r_1^{-1}(N(\epsilon, b_1))$. Then $D(u_1, 1) \leq \epsilon$ and $D(v_1, b_1) \leq \epsilon$, where $u_1 = \rho_1(u)$ and $v_1 = r_1(v)$. Let $\lambda, \eta : [0, 1] \to S^1$ be maps such that $\lambda(0) = u_1, \eta(0) = v_1, \lambda(1) = 1,$
\[\eta(1) = b_1 \text{ and } D(\lambda(t), 1), D(\lambda(t), u_1), D(\eta(t), b_1), \text{ and } D(\eta(t), v_1) \leq \epsilon \text{ for every } t \in [0, 1]. \]

Consider the continuous fold

\[\delta_p : S^1 - \{-1\} \to S^1 - \{-1\} \text{ (resp., } \delta_q : S^1 - \{-1\} \to S^1 - \{-1\}) \]

of the \(p \)-th root (resp., \(q \)-th root) function such that \(\delta_p(1) = 1 \) (resp., \(\delta_q(1) = 1 \)).

Define \(\sigma : [0, 1] \to S_p \times S_q \) by:

\[
\sigma(t) =
[(\lambda(t), u_2 \delta_p(\frac{\lambda(t)}{u_1})), u_3 \delta_p(\frac{\lambda(t)}{u_1})), \ldots),
(\eta(t), v_2 \delta_q(\frac{\eta(t)}{v_1})), v_3 \delta_q(\frac{\eta(t)}{v_1})), \ldots)].
\]

Then \(\sigma \) is continuous, \(\sigma(t) \in \rho^{-1}_1(N(\epsilon, 1)) \times \rho^{-1}_1(N(\epsilon, b_1)) \subset L \) for every \(t \in [0, 1], \sigma(0) = (u, v) \) and \(\sigma(1) \in T(1, b_1) \).

Hence \((u, v) \) can be connected with \(T(1, b_1) \) by a connected subset of \(L \). Since \(T(1, b_1) \) is connected, we conclude that \(L \) is connected.

Similarly, \(M \) is connected.

Therefore, \(S_p \times S_q \) is mutually aposyndetic.

Questions

QUESTION 1. (C. L. Hagopian) Are there two tree-like indecomposable continua \(X \) and \(Y \) such that \(X \times Y \) is mutually aposyndetic?

QUESTION 2. ([2, p. 87]) If \(M \) is an indecomposable plane continuum, must the product \(M \times M \) be strictly non-mutually aposyndetic?

QUESTION 3. Is there an indecomposable continuum \(X \) such that \(X \times X \) is mutually aposyndetic?
References

Instituto de Matemáticas
UNAM, Cd. Universitaria
México, 04510
D.F., MEXICO

e-mail address: illanes@gauss.matem.unam.mx