COVERING PROPERTIES AND METRISATION OF MANIFOLDS 2

David Gauld* and M.K. Vamanamurthy

Abstract

There are many conditions equivalent to metrisability for a topological manifold which are not equivalent to metrisability for topological spaces in general. What are the weakest such? We show that a number of weak covering properties which are equivalent to metrisability for a manifold, for example metaLindelöf, may be further weakened by considering only covers of cardinality the first uncountable ordinal. Extensions to higher cardinals are discussed.

1. Introduction and Definitions

By a topological manifold we mean a connected Hausdorff space each point of which has a neighbourhood homeomorphic to euclidean space. In [4] there is a list of over 50 conditions which are equivalent to metrisability for a manifold but not for a topological space in general. As one might expect, some of these conditions are strictly stronger than metrisability and some are strictly weaker than metrisability in a general space. In this paper we investigate just how weak covering properties can be made while still being equivalent to metrisability for a manifold.

* Supported in part by a Marsden Fund Award, UOA611, from the Royal Society of New Zealand.

Mathematics Subject Classification: 03E75, 54D20, 54E35, 57N05, 57N15

Key words: [κ, λ]-compact, linearly Lindelöf, ω_1-Lindelöf, ω_1-metaLindelöf, nearly linearly ω_1-metaLindelöf, metrisable, manifold, property pp.
All cardinals are assumed infinite. We denote the cardinality of a set X by $|X|$. If $x \in X$ and \mathcal{F} is a family of subsets of X then $\text{ord}(x, \mathcal{F})$ is the order of \mathcal{F} at x, i.e. $|\{F \in \mathcal{F} \mid x \in F\}|$. When X is a topological space, we denote by $\chi(x, X)$ the character of x in X, i.e. the least infinite cardinality of a local basis at x. A good reference for the set theory used in this paper is [10].

The following properties are studied in [1] where Theorem 4.1 states that every locally metrisable, linearly Lindelöf space is hereditarily Lindelöf. They observe that their proof may be modified to show that every locally metrisable ω_1-Lindelöf space is hereditarily Lindelöf. (As noted in [1] and in Proposition 15 below, every linearly Lindelöf space is ω_1-Lindelöf.) Setting $\kappa = \omega_1$ in Proposition 12 shows that local metrisability can be replaced by local hereditary Lindelöfness.

Definition 1. A space X is linearly Lindelöf provided that every open cover of X which is a chain has a countable subcover. A family \mathcal{F} of subsets of a set X is a chain provided that $\forall F, G \in \mathcal{F}$ either $F \subset G$ or $G \subset F$.

A space X is ω_1-Lindelöf provided that every open cover of X of cardinality ω_1 has a countable subcover.

Recall also the following definition.

Definition 2. Let κ and λ be two cardinal numbers. A topological space X is $[\kappa, \lambda]$-compact, [12], if and only if every open cover of X of cardinality at most λ has a subcover of cardinality less than κ.

If $\kappa = \omega$ then $[\kappa, \lambda]$-compact is also called initially λ-compact. If $\lambda \geq |X|$ then $[\kappa, \lambda]$-compact is also called finally κ-compact.

Motivated by these definitions we formulate the following definitions, where κ and λ are two cardinal numbers:

Definition 3. A space X is linearly $[\kappa, \lambda]$-compact provided that every open cover \mathcal{U} of X which is a chain and satisfies $|\mathcal{U}| \leq \lambda$ has a subcover \mathcal{V} with $|\mathcal{V}| < \kappa$.
A space \(X \) is (linearly) \([\kappa, \lambda]\)-metacompact provided that every open cover \(U \) of \(X \) which (is a chain and) satisfies \(|U| \leq \lambda\) has an open refinement \(V \) such that \(\text{ord}(x, V) < \kappa \) for each \(x \in X \). If \(\lambda \geq |X| \) then \([\kappa, \lambda]\)-metacompact is also called finally \(\kappa\)-metacompact.

A space is nearly (linearly) \([\kappa, \lambda]\)-metacompact if we merely demand that \(\text{ord}(x, V) < \kappa \) for each point \(x \) in some dense subset of \(X \).

An \([\omega_1, \omega_1]\)-metacompact space may also be called an \(\omega_1\)-metaLindelöf space, and is a weak form of metaLindelöfness as it requires point-countability of a refinement only for open covers of cardinality \(\omega_1 \). Theorem 13 tells us that under appropriate conditions, which all manifolds satisfy, an \(\omega_1\)-metaLindelöf space is in fact metaLindelöf. (Nearly) linearly metaLindelöf and nearly \(\omega_1\)-metaLindelöf are defined analogously. The ultimate must be the following: a space is (nearly) linearly \(\omega_1\)-metaLindelöf provided that for every open cover \(U \) which is a chain and which satisfies \(|U| \leq \omega_1\) there is an open refinement \(V \) which is point-countable (on a dense subset).

Given a set \(X \) and a collection \(S \) of subsets of \(X \), a choice function is a function \(f : S \to X \) such that \(f(S) \in S \) for each \(S \in S \).

Definition 4. A space \(X \) has property \((\omega_1)\)pp, \([7]\), provided that each open cover \(U \) of \(X \) (with \(|U| = \omega_1\)) has an open refinement \(V \) such that for each choice function \(f : V \to X \) with \(f(V) \in V \) for each \(V \in V \) the set \(f(V) \) is closed and discrete in \(X \).

The main result in this paper is the following.

Theorem 5. Let \(M \) be a manifold. Then the following are equivalent:

(a) \(M \) is metrisable;

(b) \(M \) is nearly linearly \(\omega_1\)-metaLindelöf;
(c) for every open cover \(U \) of \(M \) with \(|U| = \omega_1 \) there is an open refinement \(V \) such that for every choice function \(f : V \rightarrow M \) the set \(f(V) \) is closed and discrete;

(d) for every open cover \(U \) of \(M \) with \(|U| = \omega_1 \) there is an open refinement \(V \) such that for every choice function \(f : V \rightarrow M \) the set \(f(V) \) is closed;

(e) for every open cover \(U \) of \(M \) with \(|U| = \omega_1 \) there is an open refinement \(V \) such that for every choice function \(f : V \rightarrow M \) the set \(f(V) \) is discrete.

Of course with the Continuum Hypothesis this tells us no more than what we already know from [4], that every (nearly) meta-Lindelöf manifold (equivalently, manifold with property pp) is metrisable, as every manifold has the cardinality of the continuum, by [9, Theorem 2.9].

2. Finally \(\kappa \)-metacompact Spaces

Recall that the character of a space \(X \) is the least cardinal \(\kappa \) for which every point of \(X \) has a local base of cardinality at most \(\kappa \).

We say that a sequence \(\langle V_\alpha \rangle \) of subsets of a space is strongly increasing provided that \(V_\alpha \subset V_{\alpha+1} \) for each \(\alpha \).

Lemma 6. Let \(\kappa \) be a regular cardinal. Suppose that \(X \) is a space such that \(\chi(x, X) < \kappa \) for each \(x \in X \) and \(\langle V_\alpha \rangle \) is a strongly increasing \(\kappa \)-sequence of subsets of \(X \). Then \(\bigcup_{\alpha<\kappa} V_\alpha \) is closed in \(X \).

Proof. Suppose that \(x \in \overline{\bigcup_{\alpha<\kappa} V_\alpha} \). Let \(\{U_\beta \mid \beta \leq \theta \} \) be a neighbourhood base at \(x \), where \(\theta < \kappa \). For each \(\beta \) we have \(U_\beta \cap (\bigcup_{\alpha<\kappa} V_\alpha) \neq \emptyset \) so \(U_\beta \cap V_{\alpha_\beta} \neq \emptyset \) for some \(\alpha_\beta < \kappa \). Let \(\alpha = \sup \{\alpha_\beta \mid \beta \leq \theta \} \). Then \(\alpha < \kappa \) and \(U_\beta \cap V_\alpha \neq \emptyset \) for all \(\beta \), and hence \(x \in \overline{V_\alpha} \subset \overline{V_{\alpha+1}} \). Thus \(\overline{\bigcup_{\alpha<\kappa} V_\alpha} \subset \bigcup_{\alpha<\kappa} V_\alpha \). \(\square \)
Lemma 7. Let κ be a regular cardinal. Suppose that X is a connected space and that \mathcal{V} is an open cover of X such that $\text{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$ and each member of \mathcal{V} has density $< \kappa$. Then $|\mathcal{V}| < \kappa$.

Proof. We may assume that $\emptyset \not\in \mathcal{V}$.

Pick any $V_0 \in \mathcal{V}$ and set $\mathcal{V}_0 = \{V_0\}$. Assuming that $\mathcal{V}_i \subset \mathcal{V}$ has been defined, let $V_i = \cup \mathcal{V}_i$ and set $\mathcal{V}_{i+1} = \{V \in \mathcal{V} | \forall V \cap V_i \neq \emptyset\}$. It suffices to show that $|\mathcal{V}_i| < \kappa$ and that $\mathcal{V} = \cup_{i=0}^{\infty} \mathcal{V}_i$.

(i) We show that $|\mathcal{V}_i| < \kappa$ by induction on i, the result being trivial when $i = 0$. Suppose that $|\mathcal{V}_i| < \kappa$. Then because κ is regular, V_i has a dense subset, say D_i, with $|D_i| < \kappa$. For each $V \in \mathcal{V}_{i+1}$ we have $V \cap V_i \neq \emptyset$ so $V \cap D_i \neq \emptyset$. Again because κ is regular, $\mathcal{V}_{i+1} = \cup_{d \in D_i} \{V \in \mathcal{V} | d \in V\}$ has cardinality less than κ since $\text{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$.

(ii) $\mathcal{V} = \cup_{i=0}^{\infty} \mathcal{V}_i$ follows from connectedness via the fact that any two points of X are chained to each other by members of \mathcal{V}: thus for any $x \in V_0 \in \mathcal{V}$ and any $y \in V \in \mathcal{V}$ there is a finite sequence $\langle W_i \rangle$ of members of \mathcal{V} such that $x \in W_0$, $y \in W_n$ and $W_{i-1} \cap W_i \neq \emptyset$ for each $i = 0, \ldots, n$. We may assume that $W_0 = V_0$ and $W_n = V$. Then for each i, $W_i \in \mathcal{V}_i$. In particular $V \in \mathcal{V}_n$. \qed

Corollary 8. Let κ be a regular cardinal. Then any connected and finally κ-metacompact space which is locally of density $< \kappa$ is finally κ-compact.

In particular every connected, locally separable, metaLindelöf space is Lindelöf. We also obtain:

Corollary 9. Let κ be a regular cardinal and λ any cardinal. Every connected, $[\kappa, \lambda]$-metacompact space of density $< \kappa$ is $[\kappa, \lambda]$-compact.
Proof. Suppose that X is a connected, $[\kappa, \lambda]$-metacompact space of density $< \kappa$ and let \mathcal{U} be an open cover of X with $|\mathcal{U}| = \lambda$. Let \mathcal{V} be an open refinement of \mathcal{U} such that $\text{ord}(x, \mathcal{V}) < \kappa$ for each $x \in X$. As an open subset of a space of density $< \kappa$, each member of \mathcal{V} has density $< \kappa$. By Lemma 7, $|\mathcal{V}| < \kappa$ and hence \mathcal{U} has a subcover of cardinality less than κ. \hfill \Box

Let X be a topological space and A a non-empty subset of X. A point $x \in X$ is a point of complete accumulation of A if and only if for every neighbourhood N of x we have $|A \cap N| = |A|$.

Proposition 10. [2, page 17] and [13, Theorem 1] Let κ be a regular cardinal. A space X is $[\kappa, \kappa]$-compact if and only if every $A \subset X$ such that $|A| = \kappa$ has a point of complete accumulation.

Proposition 11. Let κ be a regular cardinal. Let X be a space which is not hereditarily finally κ-compact. Then there is a subspace $Y \subset X$ such that $|Y| = \kappa$ and that no subset $Z \subset Y$ of cardinality κ is finally κ-compact.

Proof. (cf [11, Theorem 3.1]). Because X is not hereditarily finally κ-compact there is a strictly increasing sequence $\langle U_\alpha \rangle_{\alpha < \kappa}$ of open sets. For each $\alpha < \kappa$ choose $y_\alpha \in U_{\alpha+1} - U_\alpha$ and set $Y = \{y_\alpha \mid \alpha < \kappa\}$. \hfill \Box

The following result generalises [1, theorem 4.1]. The proof may be obtained by appropriate generalisation of the proof of that result using Propositions 10 and 11.

Proposition 12. Let κ be a regular cardinal. Every locally hereditarily finally κ-compact, $[\kappa, \kappa]$-compact space is hereditarily finally κ-compact.

Theorem 13. Let κ be a regular cardinal. Suppose that X is a space which is of character $< \kappa$, is locally connected, locally hereditarily finally κ-compact and locally hereditarily of density $< \kappa$. If X is $[\kappa, \kappa]$-metacompact then X is the topological direct sum of finally κ-compact spaces.
Proof. As X is locally connected, every component is open so by looking at each component separately if necessary we may assume that X is connected also. We construct a strongly increasing κ-sequence $\langle V_\alpha \rangle$ of non-empty, connected, open and finally κ-compact subsets of X.

Because X is locally connected and locally hereditarily finally κ-compact we may begin by choosing any non-empty, connected, open, finally κ-compact subset $V_0 \subset X$. For any other limit ordinal α, if V_β has already been constructed for all $\beta < \alpha$, let $V_\alpha = \bigcup_{\beta < \alpha} V_\beta$.

Suppose that V_α has been constructed. Because V_α is finally κ-compact it also has a dense subset of cardinality $< \kappa$. Thus \bar{V}_α has a dense subset of cardinality $< \kappa$. \bar{V}_α is also connected as V_α is. Furthermore, as a closed subset of a $[\kappa, \kappa]$-metacompact space \bar{V}_α is also $[\kappa, \kappa]$-metacompact. Thus by Corollary 9 \bar{V}_α is $[\kappa, \kappa]$-compact. It now follows from Proposition 12 that \bar{V}_α is finally κ-compact. For each $x \in \bar{V}_\alpha - V_\alpha$ choose $U_x \subset X$ open and finally κ-compact such that $x \in U_x$. Then $\{U_x \mid x \in \bar{V}_\alpha - V_\alpha\}$ is an open cover of the finally κ-compact subset $\bar{V}_\alpha - V_\alpha$ so has a subcover of cardinality $< \kappa$. The collection consisting of this subcover together with V_α is a collection of fewer than κ many open finally κ-compact subsets of X so their union is also open and finally κ-compact and contains \bar{V}_α. Let $V_{\alpha+1}$ be the component of this union containing V_α.

Suppose that \mathcal{U} is an open cover of X. Then for each $\alpha < \kappa$, \mathcal{U} is also an open cover of the finally κ-compact set V_α: let \mathcal{U}_α be a subcover of cardinality $< \kappa$. Then $\bigcup_{\alpha < \kappa} \mathcal{U}_\alpha$ is a subfamily of \mathcal{U} of cardinality at most κ which covers $\bigcup_{\alpha < \kappa} V_\alpha$, hence the connected space X, by Lemma 6 because this union is non-empty, open and closed. As X is $[\kappa, \kappa]$-metacompact it follows that this subfamily has an open refinement whose order at each point is less than κ and hence so does \mathcal{U}. Now it follows from Corollary 8 that X is finally κ-compact. \qed
Remark. The three local properties ‘of character $< \kappa$, locally
hereditarily finally κ-compact and locally hereditarily of density
$< \kappa$’ of Theorem 13 are all implied by the single local prop-
erty: locally of weight $< \kappa$. In the case where $\kappa = \omega_1$ these
four properties are, respectively, first countable, locally heredi-
tarily Lindelöf, locally hereditarily separable and locally second
countable and in this case, Theorem 13 gives:

Corollary 14. Every connected, locally connected, locally sec-
ond countable, ω_1-metaLindelöf space is Lindelöf.

This corollary has an obvious generalisation to higher regular
cardinal κ in place of ω_1.

Proposition 15. (cf [1]) Every linearly ω_1-(meta)Lindelöf space
is ω_1-(meta)Lindelöf.

Proof. We will just consider the metaLindelöf case. Let U be an
open cover of the linearly ω_1-metaLindelöf space X such that
$|U| = \omega_1$. Then we can write $U = \{U_\alpha \mid \alpha < \omega_1\}$. For each
$\alpha < \omega_1$ let $V_\alpha = \bigcup \{U_\beta \mid \beta < \alpha\}$. Then $V = \{V_\alpha \mid \alpha < \omega_1\}$
is an open cover of X which is a chain. Thus as X is linearly
ω_1-metaLindelöf it follows that there is a point-countable open
refinement, say \mathcal{W}.

For each $W \in \mathcal{W}$ there is $\alpha(W) < \omega_1$ such that $W \subset V_{\alpha(W)}$.
Let $S = \{W \cap U_\beta \mid W \in \mathcal{W} \text{ and } \beta \leq \alpha(W)\}$. Then S is a
point-countable open refinement of U. □

Proof of the equivalence of (a) and (b) of Theorem 5

As every metrisable space is paracompact, it is also nearly
linearly ω_1-metaLindelöf so (a)\Rightarrow(b) in Theorem 5. For the
converse, suppose that M is a nearly linearly ω_1-metaLindelöf
manifold. Clearly one can modify the proof of [5, Lemma 3.2] to
conclude that M is linearly ω_1-metaLindelöf. As every manifold
is T_3, connected, locally connected and locally second count-
able, it follows from Corollary 14 and Proposition 15 that M
is Lindelöf, hence second countable and therefore metrisable by
Urysohn’s Metrisation Theorem. □
3. Spaces with Property pp

Lemma 16. A point \(x \in X \) is a limit point of \(X \) if and only if for each collection \(\mathcal{V} \) of open sets containing \(x \), with \(|\mathcal{V}| \geq \chi(x,X)\), there exists a choice function \(f : \mathcal{V} \to X \), such that \(x \in f(\mathcal{V}) - f(\mathcal{V}) \).

Proof. \(\Rightarrow \): Suppose that \(\mathcal{V} \) is a collection of open sets containing \(x \) with \(|\mathcal{V}| \geq \chi(x,X)\), say \(\{V_\alpha \mid \alpha < \chi(x,X)\} \subset \mathcal{V} \) satisfies \(V_\alpha \neq V_\beta \) whenever \(\alpha \neq \beta \). Let \(\{W_\alpha \mid \alpha < \chi(x,X)\} \) be a neighbourhood basis at \(x \). Then we may define \(f : \mathcal{V} \to X \) so that \(f(V_\alpha) \in V_\alpha \cap W_\alpha - \{x\} \). Then \(x \in f(\mathcal{V}) - f(\mathcal{V}) \).

\(\Leftarrow \): Let \(U \) be any neighbourhood of \(x \) and take \(\mathcal{V} \) to be a collection of open neighbourhoods of \(x \) forming a neighbourhood basis at \(x \). Then \(|\mathcal{V}| \geq \chi(x,X)\). Let \(f : \mathcal{V} \to X \) be a choice function such that \(x \in f(\mathcal{V}) - f(\mathcal{V}) \). Then \(f(U) \in U - \{x\} \), so \(x \) is a limit point of \(X \). \(\square \)

Lemma 17. Let \(\mathcal{V} \) be an open cover of a \(T_1 \) space \(X \). Then the following are equivalent:

(a) For every choice function \(f : \mathcal{V} \to X \), the set \(f(\mathcal{V}) \) is closed and discrete;

(b) For every choice function \(f : \mathcal{V} \to X \), the set \(f(\mathcal{V}) \) is closed;

(c) For every choice function \(f : \mathcal{V} \to X \), the set \(f(\mathcal{V}) \) is discrete.

Proof. It suffices to show that (b) and (c) are equivalent.

(b) \(\Rightarrow \) (c). Suppose that \(f : \mathcal{V} \to X \) is a choice function but \(f(\mathcal{V}) \) is not discrete. Then there is \(x \in f(\mathcal{V}) \) every neighbourhood of which meets \(f(\mathcal{V}) \) in some point other than \(x \). Define \(g : \mathcal{V} \to X \) by \(g(V) = f(V) \) if \(f(V) \neq x \) and \(g(V) \in V - \{x\} \) if \(f(V) = x \). Then \(x \in g(\mathcal{V}) - g(\mathcal{V}) \) so \(g(\mathcal{V}) \) is not closed.
(c)⇒(b). Suppose that $f : \mathcal{V} \to X$ is a choice function but $f(\mathcal{V})$ is not closed, say $x \in f(\mathcal{V}) - f(\mathcal{V})$. Pick $V_x \in \mathcal{V}$ such that $x \in V_x$. Define $g : \mathcal{V} \to X$ by $g(V) = f(V)$ unless $V = V_x$ and let $g(V_x) = x$. Because X is T_1 it follows that every neighbourhood of x meets $g(\mathcal{V})$ in some point other than x so $g(\mathcal{V})$ is not discrete. □

Proposition 18. Let κ be a cardinal. Suppose that X has character at most κ and has no isolated points, and that every open cover \mathcal{U} of X with $|\mathcal{U}| = \kappa^+$ has an open refinement \mathcal{V} such that for every choice function $f : \mathcal{V} \to X$ the set $f(\mathcal{V})$ is closed. Then X is $[\kappa^+, \kappa^+]$-metacompact.

Proof. Let \mathcal{U} be an open cover of X with $|\mathcal{U}| = \kappa^+$. Apply Lemma 16 to the open refinement \mathcal{V} given by hypothesis: then $\text{ord}(x, \mathcal{V}) < \kappa < \kappa^+$ for each $x \in X$. □

We can now complete the proof of Theorem 5.

By Lemma 17 (c), (d) and (e) are equivalent. By Proposition 18 with $\kappa = \omega$, (d) implies (b). Finally every metrisable manifold is pp and hence satisfies (c).

4. Some Questions

Are there even weaker covering conditions which are equivalent to metrisability for a manifold?

Using [6, Theorems 1 and 2] (or see [3, Theorem 8.11]) and [9, Theorem 2.5] we find that the following conditions are each equivalent to metrisability for a manifold:

- M is normal and θ-refinable;
- M is normal and subparacompact.

Let X be a space.

X is θ-refinable ([14]) (also called submetacompact) if every open cover can be refined to an open θ-cover, i.e. a cover \mathcal{U} which can be expressed as $\bigcup_{n \in \omega} \mathcal{U}_n$ where each \mathcal{U}_n covers X and for each $x \in X$ there is n such that $\text{ord}(x, \mathcal{U}_n) < \omega$.
X is subparacompact, [8] (where it is called F_σ-screenable), if every open cover has a σ-discrete closed refinement.

Our theme suggests the following definition.

Definition 19. Say that X is ω_1-θ-refinable if every open cover \mathcal{U} of X with $|\mathcal{U}| = \omega_1$ has a θ-refinement.

Question 20. Is every ω_1-θ-refinable manifold θ-refinable?

Question 21. Must a manifold be metrisable if it is normal and every open cover of cardinality at most ω_1 has an open θ-refinement?

Question 22. Must a manifold be metrisable if it is normal and every open cover of cardinality at most ω_1 has a σ-discrete closed refinement?

Comparing Corollary 8 with Corollary 9 leads to the following question.

Question 23. Let κ be a regular cardinal. Must every connected and $[\kappa, \kappa]$-metacompact space which is locally of density $< \kappa$ be $[\kappa, \kappa]$-compact?

Note that in Proposition 18 we have only concluded that X is $[\kappa^+, \kappa^+]$-metacompact rather than $[\kappa, \kappa^+]$-metacompact even though the open cover of size κ^+ has been refined to an open cover of order less than κ: we did not carry out a similar reduction of an open cover of cardinality κ because we did not need to. This raises the following question.

Question 24. Is there a space X with character at most κ and having no isolated points such that every open cover of size κ^+ has an open refinement \mathcal{V} whose order at each point is less than κ but X is not $[\kappa, \kappa^+]$-metacompact?

Acknowledgement. The authors thank the referee for a number of suggestions which have improved the exposition of this paper.
References

The Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland, New Zealand

E-mail address: gauld@math.auckland.ac.nz

E-mail address: vamanamu@math.auckland.ac.nz