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Abstract

Characterizations are given for hereditarily a- nor-
mal and hereditarily -normal spaces. We obtain
results related to these spaces and extremally dis-
connected spaces. Results and a question on infi-
nite products are also given.

1. Introduction

In [AL], two new generalizations of normality were introduced.
A space X is called a-normal if for any two disjoint closed sub-
sets A and B of X there exist disjoint open subsets U and V' of
X such that ANU is dense in A and BNV is dense in B. A
space X is called #-normal if for any two disjoint closed subsets
A and B of X there exist open subsets U and V' of X such that
ANU isdense in A, BNV is dense in B, and UNV = (). Clearly,
normality implies S-normal and $-normal implies a-normal.
Several results involving extremally disconnected spaces and
hereditarily separable spaces were presented in that paper. It
was natural to search the literature for such topics and explore
the role of a- or [-normality in such spaces. Several of the
results in this paper use hereditary a-normality to strengthen
Wage’s [W] results on extremally disconnected S-spaces. We
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also present several characterizations of hereditarily o~ and [3-
normal spaces.

In 1948, A.H. Stone proved that N“! is not normal. We
show that this space is not a-normal. Several results are given
from this example that describe the behavior of hereditary a-
normality under uncountable products and characterize certain
uncountable products.

2. Hereditarily a-normal

Recall the following well-known characterization of hereditarily
normal spaces.

Fact 2.1. For every Ti-space X, the following conditions are
equivalent:

(1) The space X is hereditarily normal.
(2) Every open subspace of X is normal.

(3) For every pair of separated sets A, B C X there exists open
sets U,V C X suchthat ACU, BCVand UNV = (.

We now have a parallel result for a-normality.

Defintition 2.1. A space X is hereditarily a-normal if every
subspace of X is a-normal.

Theorem 2.1. For every Ti-space X, the following conditions
are equivalent:

(1) The space X 1is hereditarily a-normal.
(2) Every open subspace of X is a-normal.

(3) For every pair of separated sets, A, B C X there exists open
sets U,V C X such that ANU is dense in A, BNV 1is dense
in B and UNV =10. (We may call this a-separated.)
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Proof. The implication (1) = (2) is obvious. For (2) = (3), let
A and B be separated sets of X. Consider M = X \ (AN B), an
open subspace of X with A, B C M. Since Cly;(A)NCly (B) =0
and by hypothesis M is a-normal, there exists open disjoint
U,V C M such that

UNCL(A) = Cly(A) and VNCL(B) = Cly(B)

That is, UN A is dense on A and VN B is dense on B. But M is
open in X, thus U,V are open in X as desired. For (3) = (1),
let M be a subspace of X and A, B C M a pair of disjoint closed
subsets. Note A and B are separated in X. By hypothesis there
exists open disjoint U,V C X such that A NU is dense in A
and BNV is dense in B. Now U N M and V N M are open in
M and clearly AN (UN M) is dense in A and BN (VN M) is
dense in B. That is, M is a-normal, that is X is hereditarily
a-normal. 0

It is curious to note that a parallel to Theorem 2.1 does not
hold for the seemingly stronger property of f-normality. Only
parts (1) and (2) hold for hereditarily S-normal spaces as the
following example and theorem demonstrate.

Example 2.1. Let X = [0, 1] with the usual topology. Clearly,
X is metrizable, hence hereditarily normal, thus hereditarily (-
normal. Consider A = [0,3) B = (3,1], two separated subsets
of X. There does not exist open disjoint subsets U, V' of X such
that ANU is dense on A, BNV is dense on B and UNV = 0,
since {3} € UNV for all such U and V. Thus we see that there

is no version of (3) of Theorem 2.1 for S-normal spaces.

Theorem 2.2. For every Ti-space X, the following conditions
are equivalent:

(1) The space X 1is hereditarily 3-normal.

(2) Every open subspace of X is [3-normal.
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Proof. The implication (1) = (2) is obvious. For (2) = (3), let
M be a nonempty subspace of X. Let A and B be closed disjoint
subsets of M. Clearly A = Clx(A)N M and B = Clx(B) N M.
Consider Y = X \ (Clx(A) N Clx(B)) is an open subspace of
X with A and B closed disjoint subsets of Y. By hypothesis Y
is f-normal, so there exist open U,V C Y such that ANU is
dense in A, BNV is dense in B and Cly (U)NCly (V) = (). Since
M CY, we have UN M and V N M are open disjoint subsets
of M with ANU N M is dense in A, BNV N M is dense in B
and Cly(UN M) NCly (VN M) =0. That is, M is -normal,
hence X is hereditarily S-normal. 0

It was shown in [AL] that every extremally disconnected a-
normal space X is normal and every S-space is a-normal. We
now take the natural course and investigate the properties of
extremally disconnected hereditarily a-normal spaces. Many of
the results in this section strengthen those of Wage by removing
the S-space property and inserting the property hereditarily a-
normal. The first result shows that for extremally disconnected
spaces, hereditarily a-normal is equivalent to hereditarily nor-
mal.

Theorem 2.3. Let X be an extremally disconnected space. X
18 hereditarily normal if and only if X is hereditarily a-normal.

Proof. Necessity is clear. For sufficiency, let Y be an open
subspace of X. Let A and B be two closed disjoint subsets of Y.
Since Y is a-normal, there exists disjoint open subsets U and
V of Y such that AN U is dense in A and B NV is dense in
B. But Y is open, hence extremally disconnected. This implies
that Cly(U) and Cly (V) are disjoint and open in Y. Thus,
A=Cly(ANnU) CCly(U) and B=Cly(BNV) C Cly(V) as
desired. 0

Corollary 2.1. Every extremally disconnected hereditarily o-
normal space X is hereditarily extremally disconnected.
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Proof. By Theorem 2.3 , X is hereditarily normal. It is an easy
exercise to show that every extremally disconnected hereditarily
normal space is hereditarily extremally disconnected. 0

In [K], Kochinats defined a space X to be weakly perfect if
every closed subspace A of X contains some subset which is
dense in A and is a G5 in X. Couple this with a-normal and we
have the following definition.

Defintition 2.2. A space X is weakly perfectly a-normal if X
is weakly perfect and a-normal.

Theorem 2.4. If X is an extremally disconnected, weakly per-
fectly hereditarily a-normal space, then X is perfect.

Before proving 2.4, we consider the following lemma.

Lemma 2.1. Let X be an extremally disconnected hereditarily
a-normal space. If A is a closed subset of X and U is an open
subset of X such that ANU = A, then AUU 1is an open set in
X.

Proof. Suppose A U U is not open. Then there exists x € A
such that z € X\(AUU). Since ANU =Aand X \ (AUU) C
X\U = X\ U, we have (X \ (AUU))N(ANU) = § and
(X\(AUU)N(ANU) = 0 respectively. Hence X \ (AUU)
and ANU are separated subsets of X and by Theorem 2.3, X
is hereditarily normal. So, there exist open disjoint subsets V
and W of X, such that X \ (AUU) CV and ANU CW. We

now have

reX\(AuU)CV
reA=ANUCW.

But X is extremally disconnected, so VAW = (), a contradiction.
Hence AU U is open as desired. 0
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Proof. [Proof of Theorem 2.4] Let A be a closed subset of X.
Since X is weakly perfect, there exists a G5, G = ()., Gn, of
X such that A =, Gn. Clearly G,NA = Aforalln € w,
hence GG, U A is an open subset of X for all n € w by Lemma 2.1.

Thus A =) G,UA)is a Gs in X. That is, X is perfect. O

new (

It is interesting to note that Wage showed under & that not
every extremally disconnected S-space is perfect [W]. In [AL],
it was shown that every regular, hereditarily separable space is
hereditarily a-normal. Thus, every S-space is hereditarily a-
normal. So we see that weakly perfect is a necessary condition
for Theorem 2.4.

In his Ph.D. thesis, Wage showed that there are no extremally
disconnected hereditarily separable Dowker spaces. Indeed, ev-
ery extremally disconnected, hereditarily separable, regular space
X is normal and countably metacompact, hence countably para-
compact. It is unclear at this time if hereditarily separable can
be replaced by hereditarily a-normal or even hereditarily normal
to obtain the same result.

Question 2.1. Does there exist a hereditarily normal (c-normal,
B-normal), extremally disconnected Dowker space?

3. Infinite Products

In his 1948 article, A.H. Stone provided a necessary and suffi-
cient condition for the topological product of uncountably many
metric spaces to be normal. We now strengthen this result by
showing the same holds true for a-normality.

Example 3.1. The product of uncountably many metric spaces
may not be a-normal: the product space N“1 of wy copies of the
natural numbers is not a-normal.

Proof. For convenience of notation we use w*! instead of N“1.
For a contradiction, suppose w** is a-normal. We will witness
two closed disjoint subsets on w*! which cannot be a-separated.
Fix T'= w\{0, 1} and define two subsets of w** as follows:
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Ey={r €w* :Ja € w;s.t.x [, isonetooneinto T"and
() =0V3 > a},
Ey={r€ew: :Ja €wst.x |, isonetooneinto T"and

x(B)=1Vp > a}.

It can be easily shown that Ey and F; are indeed disjoint closed
subsets of w**. By assumption, there exists disjoint open subsets
U,V of wt such that U N Ey = Ey and V N E; = E;. Consider
the homeomorphism ¢ : w** — w** defined by

[ 2(a) if () €T
Pu(a) = { 1 —z(a) if z(a) € {0,1}

Note that ¢(E;) = Ey. Let V! = ¢(V), then V' N E; is an open
dense subset of Ey. Hence U NV’ N Ey is an open dense subset
of E(].

Now find an uncountable A C w; and corresponding
F =A{za:a € A} CUNV'N Ey such that z, [, is one to one
into 7" and z,(8) = 0 for all # > «. For all @ € A, find a finite
restriction g, of z, such that the basic open set [g] C U N V",
Consider hy, = ¢ 0 g, and y, = ¢ 0 z,. For each a € A we have
Yo € VN EL [ha] CV, ha [a= ga [a, and ho(8) = 1if 8 > a.
Consider D = {dom(g,) : « € A}. Without loss of generality,
we assume

{dom(gs) N (w1\) : a € A} (%)
is pairwise disjoint.

By the delta system lemma, there exists an uncountable D’ C D,
indexed by A’ C A, with a root a. Note that by (*), for each
a € N, we have a C dom(g,) Na. Observe that {g, [o: @ € A}
has only countably many elements. So there exists a,vy € A/,
a < 7, such that g, [= ga la- But go [a= gy [a= @0 gy [a=
hy o and (dom(ga)\a) N (dom(h,)\a) = 0 by the delta system
lemma. We conclude that [g,] N [ha] # 0. That is, UNV # 0,
a contradiction. 0
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Now we can completely describe the behavior of hereditary
a-normality under uncountable products.

Theorem 3.1. The product of uncountably many spaces con-
taining at least two points is never hereditarily a-normal.

Proof. Note that such a space contains a copy of N*'. For
example see [P]. d

The following result shows that products of uncountably many
factors are rarely a-normal.

Theorem 3.2. If the product space X = Il X, is a-normal,
then all spaces, with the exception of at most countably many,
are countably compact. In particular, if X* is a-normal, then
X s countably compact.

Proof. Suppose that X, is not countably compact for, say,
a < w;. Then each X,, for a < wy, contains a closed copy
of the discrete space N of natural numbers. Since a-normality
is preserved under closed subspaces, we have N“! is a-normal.
This is a contradiction to Example 3.1. 0

Corollary 3.1. For a family {Xa}a<x of metrizable spaces, !

the following conditions are equivalent:
(1) Hper X is a-normal.
(2) Hper X is paracompact.

(3) All spaces, with the exception of at most countably many,
are compact.

Proof. The implication (2) = (1) is obvious. For (1) = (3),
by Theorem 3.2 all spaces X,, with the exception of at most

! The same can also be shown for the more general paracompact p-
spaces, see [P].
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countably many, are countably compact. A countably compact
metric space (paracompact space) is compact. For (3) = (2),
recall the product of a compact space with a paracompact space
is paracompact. Moreover, the product of countably many met-
ric spaces is paracompact. O

In [N], Noble showed that if every power X* of a T topo-
logical space is normal, then X is compact. This leads to the
following question of Arhangel’skii.

Question 3.1. If every power X" of a I topological space is c-
(B )-normal, is X compact?
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