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Abstract

Characterizations are given for hereditarily α- nor-
mal and hereditarily β-normal spaces. We obtain
results related to these spaces and extremally dis-
connected spaces. Results and a question on infi-
nite products are also given.

1. Introduction

In [AL], two new generalizations of normality were introduced.
A space X is called α-normal if for any two disjoint closed sub-
sets A and B of X there exist disjoint open subsets U and V of
X such that A ∩ U is dense in A and B ∩ V is dense in B. A
space X is called β-normal if for any two disjoint closed subsets
A and B of X there exist open subsets U and V of X such that
A∩U is dense in A, B∩V is dense in B, and U ∩V = ∅. Clearly,
normality implies β-normal and β-normal implies α-normal.

Several results involving extremally disconnected spaces and
hereditarily separable spaces were presented in that paper. It
was natural to search the literature for such topics and explore
the role of α- or β-normality in such spaces. Several of the
results in this paper use hereditary α-normality to strengthen
Wage’s [W] results on extremally disconnected S-spaces. We
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also present several characterizations of hereditarily α- and β-
normal spaces.

In 1948, A.H. Stone proved that Nω1 is not normal. We
show that this space is not α-normal. Several results are given
from this example that describe the behavior of hereditary α-
normality under uncountable products and characterize certain
uncountable products.

2. Hereditarily α-normal

Recall the following well-known characterization of hereditarily
normal spaces.

Fact 2.1. For every T1-space X, the following conditions are
equivalent:

(1) The space X is hereditarily normal.

(2) Every open subspace of X is normal.

(3) For every pair of separated sets A,B ⊆ X there exists open
sets U, V ⊆ X such that A ⊆ U, B ⊆ V and U ∩ V = ∅.

We now have a parallel result for α-normality.

Defintition 2.1. A space X is hereditarily α-normal if every
subspace of X is α-normal.

Theorem 2.1. For every T1-space X, the following conditions
are equivalent:

(1) The space X is hereditarily α-normal.

(2) Every open subspace of X is α-normal.

(3) For every pair of separated sets, A,B ⊆ X there exists open
sets U, V ⊆ X such that A∩U is dense in A, B∩V is dense
in B and U ∩ V = ∅. (We may call this α-separated.)
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Proof. The implication (1) ⇒ (2) is obvious. For (2) ⇒ (3), let
A and B be separated sets of X. Consider M = X \ (Ā∩ B̄), an
open subspace of X with A,B ⊆ M . Since ClM (A)∩ClM (B) = ∅
and by hypothesis M is α-normal, there exists open disjoint
U, V ⊆ M such that

U ∩ ClM(A)
M

= ClM(A) and V ∩ ClM(B)
M

= ClM(B)

That is, U ∩A is dense on A and V ∩B is dense on B. But M is
open in X, thus U, V are open in X as desired. For (3) ⇒ (1),
let M be a subspace of X and A,B ⊆ M a pair of disjoint closed
subsets. Note A and B are separated in X. By hypothesis there
exists open disjoint U, V ⊆ X such that A ∩ U is dense in A
and B ∩ V is dense in B. Now U ∩ M and V ∩ M are open in
M and clearly A ∩ (U ∩ M) is dense in A and B ∩ (V ∩ M) is
dense in B. That is, M is α-normal, that is X is hereditarily
α-normal.

It is curious to note that a parallel to Theorem 2.1 does not
hold for the seemingly stronger property of β-normality. Only
parts (1) and (2) hold for hereditarily β-normal spaces as the
following example and theorem demonstrate.

Example 2.1. Let X = [0, 1] with the usual topology. Clearly,
X is metrizable, hence hereditarily normal, thus hereditarily β-
normal. Consider A = [0, 1

2
) B = (1

2
, 1], two separated subsets

of X. There does not exist open disjoint subsets U, V of X such
that A ∩ U is dense on A, B ∩ V is dense on B and Ū ∩ V̄ = ∅,
since {1

2
} ∈ Ū ∩ V̄ for all such U and V . Thus we see that there

is no version of (3) of Theorem 2.1 for β-normal spaces.

Theorem 2.2. For every T1-space X, the following conditions
are equivalent:

(1) The space X is hereditarily β-normal.

(2) Every open subspace of X is β-normal.
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Proof. The implication (1) ⇒ (2) is obvious. For (2) ⇒ (3), let
M be a nonempty subspace of X. Let A and B be closed disjoint
subsets of M . Clearly A = ClX(A) ∩ M and B = ClX(B) ∩ M .
Consider Y = X \ (ClX(A) ∩ ClX(B)) is an open subspace of
X with A and B closed disjoint subsets of Y . By hypothesis Y
is β-normal, so there exist open U, V ⊆ Y such that A ∩ U is
dense in A, B∩V is dense in B and ClY (U)∩ClY (V ) = ∅. Since
M ⊆ Y , we have U ∩ M and V ∩ M are open disjoint subsets
of M with A ∩ U ∩ M is dense in A, B ∩ V ∩ M is dense in B
and ClM(U ∩ M) ∩ ClM (V ∩ M) = ∅. That is, M is β-normal,
hence X is hereditarily β-normal.

It was shown in [AL] that every extremally disconnected α-
normal space X is normal and every S-space is α-normal. We
now take the natural course and investigate the properties of
extremally disconnected hereditarily α-normal spaces. Many of
the results in this section strengthen those of Wage by removing
the S-space property and inserting the property hereditarily α-
normal. The first result shows that for extremally disconnected
spaces, hereditarily α-normal is equivalent to hereditarily nor-
mal.

Theorem 2.3. Let X be an extremally disconnected space. X
is hereditarily normal if and only if X is hereditarily α-normal.

Proof. Necessity is clear. For sufficiency, let Y be an open
subspace of X. Let A and B be two closed disjoint subsets of Y .
Since Y is α-normal, there exists disjoint open subsets U and
V of Y such that A ∩ U is dense in A and B ∩ V is dense in
B. But Y is open, hence extremally disconnected. This implies
that ClY (U) and ClY (V ) are disjoint and open in Y . Thus,
A = ClY (A ∩ U) ⊆ ClY (U) and B = ClY (B ∩ V ) ⊆ ClY (V ) as
desired.

Corollary 2.1. Every extremally disconnected hereditarily α-
normal space X is hereditarily extremally disconnected.
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Proof. By Theorem 2.3 , X is hereditarily normal. It is an easy
exercise to show that every extremally disconnected hereditarily
normal space is hereditarily extremally disconnected.

In [K], Kochinats defined a space X to be weakly perfect if
every closed subspace A of X contains some subset which is
dense in A and is a Gδ in X. Couple this with α-normal and we
have the following definition.

Defintition 2.2. A space X is weakly perfectly α-normal if X
is weakly perfect and α-normal.

Theorem 2.4. If X is an extremally disconnected, weakly per-
fectly hereditarily α-normal space, then X is perfect.

Before proving 2.4, we consider the following lemma.

Lemma 2.1. Let X be an extremally disconnected hereditarily
α-normal space. If A is a closed subset of X and U is an open
subset of X such that A ∩ U = A, then A ∪ U is an open set in
X.

Proof. Suppose A ∪ U is not open. Then there exists x ∈ A
such that x ∈ X\(A ∪ U). Since A ∩ U = A and X \ (A ∪ U) ⊆
X \ U = X \ U , we have (X \ (A ∪ U)) ∩ (A ∩ U) = ∅ and
(X \ (A ∪ U)) ∩ (A ∩ U) = ∅ respectively. Hence X \ (A ∪ U)
and A ∩ U are separated subsets of X and by Theorem 2.3, X
is hereditarily normal. So, there exist open disjoint subsets V
and W of X, such that X \ (A ∪ U) ⊆ V and A ∩ U ⊆ W . We
now have

x ∈ X \ (A ∪ U) ⊆ V

x ∈ A = A ∩ U ⊆ W.

But X is extremally disconnected, so V ∩W = ∅, a contradiction.
Hence A ∪ U is open as desired.
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Proof. [Proof of Theorem 2.4] Let A be a closed subset of X.
Since X is weakly perfect, there exists a Gδ, G =

⋂
n∈ω Gn, of

X such that A =
⋂

n∈ω Gn. Clearly Gn ∩ A = A for all n ∈ ω,
hence Gn∪A is an open subset of X for all n ∈ ω by Lemma 2.1.
Thus A =

⋂
n∈ω(Gn ∪ A) is a Gδ in X. That is, X is perfect.

It is interesting to note that Wage showed under ♣ that not
every extremally disconnected S-space is perfect [W]. In [AL],
it was shown that every regular, hereditarily separable space is
hereditarily α-normal. Thus, every S-space is hereditarily α-
normal. So we see that weakly perfect is a necessary condition
for Theorem 2.4.

In his Ph.D. thesis, Wage showed that there are no extremally
disconnected hereditarily separable Dowker spaces. Indeed, ev-
ery extremally disconnected, hereditarily separable, regular space
X is normal and countably metacompact, hence countably para-
compact. It is unclear at this time if hereditarily separable can
be replaced by hereditarily α-normal or even hereditarily normal
to obtain the same result.

Question 2.1. Does there exist a hereditarily normal (α-normal,
β-normal), extremally disconnected Dowker space?

3. Infinite Products

In his 1948 article, A.H. Stone provided a necessary and suffi-
cient condition for the topological product of uncountably many
metric spaces to be normal. We now strengthen this result by
showing the same holds true for α-normality.

Example 3.1. The product of uncountably many metric spaces
may not be α-normal: the product space Nω1 of ω1 copies of the
natural numbers is not α-normal.

Proof. For convenience of notation we use ωω1 instead of Nω1.
For a contradiction, suppose ωω1 is α-normal. We will witness
two closed disjoint subsets on ωω1 which cannot be α-separated.
Fix T = ω\{0, 1} and define two subsets of ωω1 as follows:
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E0 = {x ∈ ωω1 : ∃α ∈ ω1 s.t. x �α is one to one into T and

x(β) = 0∀β ≥ α} ,

E1 = {x ∈ ωω1 : ∃α ∈ ω1 s.t. x �α is one to one into T and

x(β) = 1∀β ≥ α} .

It can be easily shown that E0 and E1 are indeed disjoint closed
subsets of ωω1. By assumption, there exists disjoint open subsets
U, V of ωω1 such that U ∩ E0 = E0 and V ∩ E1 = E1. Consider
the homeomorphism φ : ωω1 → ωω1 defined by

φx(α) =

{
x(α) if x(α) ∈ T
1 − x(α) if x(α) ∈ {0, 1}

Note that φ(E1) = E0. Let V ′ = φ(V ), then V ′ ∩ E0 is an open
dense subset of E0. Hence U ∩ V ′ ∩ E0 is an open dense subset
of E0.

Now find an uncountable Λ ⊆ ω1 and corresponding
F = {zα : α ∈ Λ} ⊆ U ∩ V ′ ∩ E0 such that zα �α is one to one
into T and zα(β) = 0 for all β ≥ α. For all α ∈ Λ, find a finite
restriction gα of zα such that the basic open set [gα] ⊆ U ∩ V ′.
Consider hα = φ ◦ gα and yα = φ ◦ zα. For each α ∈ Λ we have
yα ∈ V ∩ E1, [hα] ⊆ V , hα �α= gα �α, and hα(β) = 1 if β ≥ α.
Consider D = {dom(gα) : α ∈ Λ}. Without loss of generality,
we assume

{dom(gα) ∩ (ω1\α) : α ∈ Λ} (∗)

is pairwise disjoint.

By the delta system lemma, there exists an uncountable D′ ⊆ D,
indexed by Λ′ ⊆ Λ, with a root a. Note that by (*), for each
α ∈ Λ′, we have a ⊆ dom(gα) ∩ α. Observe that {gα �a: α ∈ Λ}
has only countably many elements. So there exists α, γ ∈ Λ′,
α < γ, such that gγ �a= gα �a. But gα �a= gγ �a= φ ◦ gγ �a=
hγ �a and (dom(gα)\a) ∩ (dom(hγ)\a) = ∅ by the delta system
lemma. We conclude that [gα] ∩ [hα] 6= ∅. That is, U ∩ V 6= ∅,
a contradiction.
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Now we can completely describe the behavior of hereditary
α-normality under uncountable products.

Theorem 3.1. The product of uncountably many spaces con-
taining at least two points is never hereditarily α-normal.

Proof. Note that such a space contains a copy of Nω1. For
example see [P].

The following result shows that products of uncountably many
factors are rarely α-normal.

Theorem 3.2. If the product space X = Πα<κXα is α-normal,
then all spaces, with the exception of at most countably many,
are countably compact. In particular, if Xκ is α-normal, then
X is countably compact.

Proof. Suppose that Xα is not countably compact for, say,
α < ω1. Then each Xα, for α < ω1, contains a closed copy
of the discrete space N of natural numbers. Since α-normality
is preserved under closed subspaces, we have Nω1 is α-normal.
This is a contradiction to Example 3.1.

Corollary 3.1. For a family {Xα}α<κ of metrizable spaces, 1

the following conditions are equivalent:

(1) Πα<κXα is α-normal.

(2) Πα<κXα is paracompact.

(3) All spaces, with the exception of at most countably many,
are compact.

Proof. The implication (2) ⇒ (1) is obvious. For (1) ⇒ (3),
by Theorem 3.2 all spaces Xα, with the exception of at most

1 The same can also be shown for the more general paracompact p-
spaces, see [P].
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countably many, are countably compact. A countably compact
metric space (paracompact space) is compact. For (3) ⇒ (2),
recall the product of a compact space with a paracompact space
is paracompact. Moreover, the product of countably many met-
ric spaces is paracompact.

In [N], Noble showed that if every power Xκ of a T1 topo-
logical space is normal, then X is compact. This leads to the
following question of Arhangel’skii.

Question 3.1. If every power Xκ of a T1 topological space is α-
(β)-normal, is X compact?
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[P] T. Przymusiński, Products of normal spaces, Handbook of Set-
Theoretic Topology, North Holland, (1988), 781-826.

[S] A.H. Stone, Paracompactness and product spaces Bull. Amer.
Math. Soc. 54, (1948), 977–982.

[W] M. Wage, Extremally disconnected S-spaces, Topology Proceed-
ings, Vol. I (Conf.,Auburn Univ., Auburn, Ala., 1976), pp. 181–
185.

Department of Mathematics and Computer Science, Denison
University, Granville, OH 43023

Department of Mathematics and Statistics, Miami University,
Oxford, OH 45056




