THE HEREDITARILY METALINDÊOF PROPERTY
OF k–SPACES WITH σ–HCP CLOSED

k–NETWORKS

LIANG–XUE PENG

Abstract. In this paper, we prove that a regular k–space with a σ–HCP
k–network is a hereditarily metalindêof space. Thus, the question that appeared in [5] and [6] is answered.

1. Introduction

If X is a space, a family \mathcal{P} of closed subsets of X is a k–network
for X, if for every compact subset $K \subset X$ and an open neighborhood U of K, there is a finite $\mathcal{P}^* \subset \mathcal{P}$, such that $K \subset \cup \mathcal{P}^* \subset U$. A space X is called an \aleph–space if X has a σ–locally finite k–network (cf. [2] and [7]). A network for a space X is a collection \mathcal{F} of subsets of X such that whenever $x \in U$ with U open, there exists $F \in \mathcal{F}$ with $x \in F \subset U$. A space X is a σ–space if X has a σ–discrete network (cf. [1]). A space is called a sequential space if a subset $F \subset X$ is closed in X if and only if F contains all limit points of sequences from F (cf. [3]). We know that k–spaces and sequential spaces are equivalent for σ–spaces (cf. [1]). A space X is a metalindêof space if every open cover U of X has a point–countable open refinement (cf. [1]).

The properties of \aleph–spaces have been studied by many topologists. In [2], Foged proved that a sequential space or k–space with a σ–locally finite k–network (k–and–\aleph space) is a hereditarily metalindêof space, and a normal k–and–\aleph space is a paracompact

Key words and phrases. sequential space, k–network, metalindêof, k–space.
space. From [4], we know that a space with a \(\sigma \)-hereditarily closure preserving (\(\sigma \)-HCP) \(k \)-network need not be an \(\aleph \)-space. So it is necessary to study the properties of spaces with \(\sigma \)-HCP \(k \)-networks. By a space we mean a regular topological space.

In [5], Liu raised the following question: Are \(k \)-spaces with \(\sigma \)-HCP \(k \)-networks hereditarily metalindelöf? And the same question was also raised by Liu and Tanaka in [6]. Is every \(k \)-space with a \(\sigma \)-HCP \(k \)-network a metalindelöf space? In this paper, we prove that a \(k \)-space with a \(\sigma \)-HCP \(k \)-network is a hereditarily metalindelöf space. Thus, the question appearing in [5] and [6] is answered.

Lemma 1 [2]. A \(k \)-and-\(\aleph \) space is a hereditarily metalindelöf space.

Lemma 2 [3]. The following are equivalent for a regular space.

(a) \(X \) is a \(\sigma \)-space.

(b) \(X \) has a \(\sigma \)-locally finite network.

(c) \(X \) has a \(\sigma \)-discrete network.

(d) \(X \) has a \(\sigma \)-closure preserving network.

By Lemma 2, we know that a space with a \(\sigma \)-HCP \(k \)-network is a \(\sigma \)-space.

Theorem 1. A \(k \)-space with a \(\sigma \)-HCP \(k \)-network is a hereditarily metalindelöf space.

Proof: A space \(X \) is hereditarily metalindelöf iff every collection \(\mathcal{U} \) of open sets has a point–countable open refinement. Since \(X \) is a \(\sigma \)-space, it is easy to see that any \(\mathcal{U} \) has a \(\sigma \)-closed discrete (in \(X \)) refinement. Thus, it is enough to show that every closed discrete family \(\mathcal{F} \) of subsets of \(X \) may be expanded to a point–countable open family.

\(X \) is a regular space, so we may assume that \(X \) has a \(\sigma \)-HCP closed \(k \)-network. Let \(\mathcal{P} = \bigcup \{ \mathcal{P}_n : n \in \omega \} \) be a \(\sigma \)-HCP closed \(k \)-network of \(X \) and \(\mathcal{P}_n \subset \mathcal{P}_{n+1} \) for each \(n \in \omega \). Let \(\mathcal{F} = \{ F_\alpha : \alpha \in \Lambda \} \) be a discrete closed family of \(X \). Let \(\mathcal{P}(\emptyset) = \mathcal{F} \). For \(n \in \omega \), let \(P_\alpha^*(n) = \bigcup \{ P : P \in \mathcal{P}_n, P \cap F_\alpha \neq \emptyset, P \cap F_\beta = \emptyset \) for all \(\beta \in \Lambda \setminus \{ \alpha \} \}, and let \(P_\alpha(n) = P_\alpha^*(n) \setminus \cup \{ P_\beta^*(n) : \beta \in \Lambda \setminus \{ \alpha \} \} \). Then \(\mathcal{P}(n) = \{ P_\alpha(n) : \alpha \in \Lambda \} \) is a pairwise disjoint family in \(X \), and for any \(\Lambda' \subset \Lambda \), \(\cup \{ P_\beta^*(n) : \beta \in \Lambda' \} \) is a closed subset of \(X \).
For any finite sequence \(\delta \) of \(\omega \), suppose \(\mathcal{P}(\delta) \) has been defined. That is, \(\mathcal{P}(\delta) = \{ P_\alpha(\delta) : \alpha \in \Lambda \} \) is a pairwise disjoint family, where \(P_\alpha(\delta) = P^*_\alpha(\delta) \cup \{ P^*_\beta(\delta) : \beta \in \Lambda \setminus \{ \alpha \} \} \), and \(\cup \{ P^*_\beta(\delta) : r \in \Lambda' \} \) is closed for any \(\Lambda' \subseteq \Lambda \). Now, for \(n \in \omega \), we construct \(\mathcal{P}(\delta_n) \). Let \(P^*_\alpha(\delta_n) = \cup \{ P : P \in \mathcal{P}_n, P \cap P_\alpha(\delta) \neq \emptyset \} \), \(P \cap \{ P^*_\beta(\delta) : \beta \neq \alpha \} = \emptyset \). Then \(\cup \{ P^*_\beta(\delta_n) : r \in \Lambda' \} \) is closed for any \(\Lambda' \subseteq \Lambda \). Let \(P_\alpha(\delta_n) = P^*_\alpha(\delta_n) \cup \{ P^*_\beta(\delta_n) : \beta \neq \alpha \} \). Then \(\mathcal{P}(\delta_n) = \{ P_\alpha(\delta_n) : \alpha \in \Lambda \} \) is a pairwise disjoint family of \(X \).

Let \(U_\alpha = \cup \{ P_\alpha(\delta) : \delta \) is a finite sequence in \(\omega \} \). We will show that \(U_\alpha = \{ U_\alpha : \alpha \in \Lambda \} \) is a point–countable open family of \(X \) and \(F_\alpha \subset U_\alpha \) for \(\alpha \in \Lambda \).

For any \(x \in F_\alpha \), there is an open neighborhood \(V_x \) of \(X \), such that \(V_x \cap F_{\beta} \) is \(\emptyset \) for \(\beta \in \Lambda \setminus \{ \alpha \} \). Then there is \(n \in \omega \), and \(P \in \mathcal{P}_n \), such that \(x \in P \subset V_x \). Since \(\cup \{ P_{\beta}(n) : \beta \in \Lambda \setminus \{ \alpha \} \} \cap F_\alpha = \emptyset \), we have \(x \in P_\alpha(n) \). Thus, \(F_\alpha \subset U_\alpha \).

To prove \(U_\alpha \) is open, we need only to prove that it is sequential open in \(X \). Suppose a sequence \(Z \) converges to \(x \), and \(x \in U_\alpha \). Then there is a finite sequence \(\delta \) in \(\omega \), such that \(x \in P_\alpha(\delta) = P^*_\alpha(\delta) \cup \{ P^*_\beta(\delta) : \beta \in \Lambda \setminus \{ \alpha \} \} \). And we know that \(\cup \{ P^*_\beta(\delta) : \beta \in \Lambda \setminus \{ \alpha \} \} = M \) is a closed subset of \(X \). So there is an open neighborhood \(V_x \) of \(x \), such that \(V_x \cap M = \emptyset \). Then there are some \(n \in \omega \) and \(\mathcal{P}^* \subset \mathcal{P}_n \) such that \(Z \) is eventually in \(\cup \mathcal{P}^* \subset V_x \), and \(P^* \subset V_x \) contains \(x \). So \(\cup \mathcal{P}^* \subset P^*_\alpha(\delta_n) \). For any \(\beta \in \Lambda \setminus \{ \alpha \} \), \(P^*_\beta(\delta_n) \cap P^*_\alpha(\delta) = \emptyset \), so \(x \in X \setminus \cup \{ P^*_\beta(\delta_n) : \beta \in \Lambda \setminus \{ \alpha \} \} \). Thus, \(Z \) is eventually in \(P_\alpha(\delta_n) = P^*_\alpha(\delta_n) \cup \{ P^*_\beta(\delta_n) : \beta \in \Lambda \setminus \{ \alpha \} \} \). So \(U_\alpha \) is an open set of \(X \).

Suppose \(\{ U_\alpha : \alpha \in \Lambda \} \) is not point–countable. Then there is \(x \in X \) such that \(|\{ \alpha : x \in U_\alpha \}| > \omega \). Thus, there is a finite sequence \(\delta \) in \(\omega \), satisfying \(x \in P_\alpha(\delta) \), where \(\alpha \in \{ \beta : x \in U_\beta \} \). Thus, \(\{ P_\alpha(\delta) : \alpha \in \Lambda \} \) is not a pairwise disjoint family. Contradiction.

Now we have proved that \(\{ U_\alpha : \alpha \in \Lambda \} \) is a point–countable open family of \(X \) and \(F_\alpha \subset U_\alpha \) for \(\alpha \in \Lambda \). Thus, \(X \) is a hereditarily metalindelöf space.

From the proof of Theorem 1 or Theorem 6 of [8], we have the following corollary.

Corollary 1. If \(X \) is a \(k \)-space and has a \(\sigma \)-HCP weak base, then \(X \) is a metalindelöf space.
References

Department of Applied Mathematics, Beijing Polytechnic University, Beijing 100022 CHINA

E-mail address: lxuepeng@263.net.cn