APPLICATIONS OF INDEPENDENT FAMILIES

WANJUN HU∗

Abstract. We study maximal independent families (hereafter: mifs) and their applications to topological questions. We prove that if there exists either an \((\omega, \omega_1)\)-mif of size \(2^{\omega_1}\) with open density \(\omega\), or an \((\omega, \omega_1)\)-mif of size \(\leq 2^{\omega_1}\), then there exists an \(\omega\)-resolvable, not maximally resolvable, Tychonoff space.

1. Introduction

Following [7], a family \(I \subseteq \mathcal{P}(X)\) is called a \((\theta, \kappa)\)-independent family on \(X\) if for every two disjoint subfamilies \(\{A_\alpha : \alpha < \theta_1\}\) and \(\{B_\beta : \beta < \theta_2\}\) where \(\theta_1, \theta_2 < \theta\), the intersection \(\bigcap\{A_\alpha : \alpha < \theta_1\} \cap (\bigcap\{X \setminus B_\beta : \beta < \theta_2\})\) has size \(\kappa\). Such a family is called separated if for every two points \(s, t \in \kappa\) there exists \(I \in \mathcal{I}\) such that \(s \in I\) and \(t \notin I\).

Let \(<X, T>\) be a topological space. It is crowded if it has no isolated points. \(X\) is called \(\kappa\)-resolvable if there exists a partition of \(X\) into \(\kappa\)-many dense subsets. If \(X\) has no two disjoint dense subsets, then \(X\) is called irresolvable [9]. Following notation in [6], if every nonempty open subspace (respectively, crowded subset) is irresolvable, then \(X\) is open-hereditarily (respectively, hereditarily) irresolvable, in short \(OHI\) (respectively, \(HI\)). The concept of hereditarily irresolvable spaces was first defined as SI spaces in [9]. The dispersion character \(\Delta(X)\) is defined as \(\min\{|U| : U \neq \emptyset, U \in T\}\). \(X\) is maximally resolvable

∗The author wants to thank Dr. W.W. Comfort for precious guidance in his Ph.D study, and the Mathematics and Computer Science Department of Wesleyan University for generous support.

2000 Mathematics Subject Classification. Primary 54A25, 05D05; Secondary 54D80.

Key words and phrases. Independent family, Resolvable space, Cantor cube.
if X is $\Delta(X)$-resolvable. The density of X is denoted by $d(X)$. The \textit{open density} of X is denoted by $od(X)$ and is defined as $\text{min}\{d(U) : \emptyset \neq U \in T\}$.

Independent families have been studied in [8], [11], [14]. In [8], it is proved that on every infinite cardinal κ, there exist an (ω, κ)-independent family of size 2^κ. In [14], K. Kunen proved that the existence of a maximal (ω_1, κ)-independent family on some cardinal $\kappa > \omega$ is equiconsistent with the existence of a measurable cardinal. A maximal (ω_1, κ)-independent family on κ induces a zero-dimensional Baire irresolvable topology on κ. (See also [15]). On the other hand, Kunen and Tall showed in [16] that it is consistent that there exists no Baire irresolvable spaces.

Independent families have also been used to construct irresolvable spaces. In [6], E.K. van Douwen used maximal independent families to construct n-resolvable, not $n + 1$-resolvable, Tychonoff spaces. In [7], a different construction is given by F. Eckertson. In the same paper, F. Eckertson studied the relation of two concepts of maximality: a maximal (ω, κ)-independent family and a maximal independent (maximal (ω, ω)-independent) family. In [4], it is proved that for every $\kappa \geq \omega$: (1) every (ω, κ)-independent family on κ with open density κ is contained in some maximal (ω, κ)-independent family which is also maximally independent; (2) there exists a maximal (ω, κ)-independent family on κ of size 2^κ that is also maximally independent.

Independent families relate to the following question, which is asked first in [2] and then in [3]: “Is there an ω-resolvable Tychonoff space which is not maximally resolvable?” This question was discussed in several places: [7], [3]. Eckertson in [7] showed that, assuming the existence of “a crowded, HI, strong P_κ space”, there exists such a space. In [10], it was proved that, assuming Luzin’s Hypothesis, $2^\omega = 2^{\omega_1}$, there exists such a space of size ω_1. It is still unknown to us whether such a space exists in ZFC.

In this paper, we study maximal independent families of various sizes. We show, in section 2 and section 3, that: (1) For any infinite cardinal κ, if there is a maximal (ω, κ)-independent family (briefly, an (ω, κ)-mif) of size 2^κ with open density $< \kappa$, then there exists an ω-resolvable Tychonoff space of size κ which is not maximally resolvable; and (2) If there exists an (ω, ω_1)-mif on ω_1 of size τ such that $\log(\tau) < \omega_1$, then there also exists an ω-resolvable Tychonoff space which is not maximally resolvable.
2. \((\omega, \kappa)\)\text{-mif with open density} < \kappa

The following result from [7] will be useful to us.

Theorem 2.1. Let \(i_\kappa\) be the smallest cardinal \(\tau\) such that there exists a maximal \((\omega, \kappa)\)-independent family of size \(\tau\) on \(\kappa\). Then the following hold:

1. If \(\kappa = \log i_\kappa\), then every \((\omega, \kappa)\)-mif on \(\kappa\) is also maximally independent.
2. If \(\log i_\kappa < \kappa\), then there exists an \((\omega, \kappa)\)-mif on \(\kappa\) which is not maximally independent.

Each \((\omega, \kappa)\)-independent family \(I\) on a set \(X\) induces on \(X\) the topology with the subbase

\[
\{A_1 \cap ... \cap A_n \cap (X \setminus B_1) \cap ... \cap (X \setminus B_m) : n, m < \omega, A_i, B_j \in I\}.
\]

We use the same symbol \(I\) to denote that topology. The following results were proved in [4].

Theorem 2.2.

1. For any cardinal \(\lambda\) such that \(\log(2^\kappa) \leq \lambda \leq \kappa\), there exists a dense hereditarily irresolvable subset of \(\{0, 1\}^{2^\kappa}\) of size and open density \(\lambda\).
2. Let \(I\) be a separated \((\omega, \kappa)\)-independent family of size \(\tau\) on \(\kappa\). The topology induced by \(I\) is homeomorphic to a dense subset of the Cantor cube \(\{0, 1\}^\tau\).

Very little is known, even if ZFC is augmented with additional axioms, about the (possible) cardinalities of maximal \((\omega, \kappa)\)-independent families on a cardinal \(\kappa \geq \omega\). For example, the following question is not known to us.

Problem 2.3. Is it true in ZFC that every \((\omega, \kappa)\)-mif on \(\kappa\) is of size \(2^\kappa\)?

However, the question whether every \((\omega, \kappa)\)-mif of size \(2^\kappa\) is also maximally independent has the following answer.

Theorem 2.4. Let \(\tau, \kappa\) be two infinite cardinals such that \(\tau < \kappa\). The following are equivalent:

1. \(2^\tau = 2^\kappa\).
2. There exists an \((\omega, \kappa)\)-mif \(I\) of size \(2^\kappa\) on \(\kappa\) which is not maximally independent and for which \(od(I) = \tau\).
Proof. (1) \rightarrow (2). By Theorem 2.2, there exists in the Cantor cube $\{0,1\}^{2^\kappa}$ an HI dense subset D_1 of size and open density κ, and an HI dense subset D_2 of size and open density τ. Since each irresolvable dense subset of size and open density λ in $\{0,1\}^{2^\kappa}$ induces a separating (ω,λ)-mif on λ, we have a separating (ω,κ)-mif I on the set D_1 of size 2^κ such that $\text{od}(I) = \kappa$, and a separating (ω,τ)-mif J on the set D_2 of size 2^κ such that $\text{od}(J) = \tau$.

List I_1 as $\{I_\alpha : \alpha < 2^\kappa\}$. Choose an element $J \in I_2$, and list $I_2 \setminus \{J\}$ as $\{J_\alpha : \alpha < 2^\kappa\}$. We define a new independent family on $D_1 \cup D_2$ by $K = \{I_\alpha \cup J_\alpha : \alpha < 2^\kappa\}$.

Obviously, K is an (ω,κ)-independent family of size 2^κ on the set $D_1 \cup D_2$. It is easy to check that K is in fact an (ω,κ)-mif.

Certainly, the family $\{J\} \cup K$ is an independent family on $\kappa \cup \tau$, which implies that the family K is not maximally independent and $\text{od}(K) \leq \tau$. Since $\text{od}(I) = \kappa$ and $\text{od}(J) = \tau$, it follows that $\text{od}(K) = \tau$.

(2) \rightarrow (1). Since $\text{od}(I) = \tau < \kappa$, there exists a non-empty basic open subset U of the space $<\kappa, I>$ with a dense subset E of size $\tau = \text{od}(I) < \kappa$. Since there are at least 2^κ-many distinct nonempty clopen sets inside U, the subspace topology on E has cardinality at least 2^κ. Since $|E| = \tau$, we then have $2^\kappa \leq 2^\tau$ and hence $2^\tau = 2^\kappa$. \square

Corollary 2.5. The following are equivalent.

(1) Luzin’s Hypothesis, $2^\omega = 2^{\omega_1}$.

(2) There exists an (ω,ω_1)-mif I on ω_1 of size 2^{ω_1} which is not maximally independent and for which $\text{od}(I) = \omega$.

Problem 2.6. Is it true that Luzin’s Hypothesis is equivalent to this statement: there exists an (ω,ω_1)-mif of size 2^ω on ω_1?

Following the notation in [5], we use the symbol $S(X)$ to denote the smallest cardinal θ such that every pairwise disjoint family of nonempty open sets of the topological space X has size less than κ. In the book [12], the same cardinal is denoted by $\hat{c}(X)$.

Let us call a space $<X, T > \kappa$-condensed if X has a family \mathcal{K} of nowhere dense subsets such that $|\mathcal{K}| = \kappa$ and every nowhere dense subset of X is contained in some element of \mathcal{K}. It is shown in [10] that if a space $<X, T >$ has weight $\leq 2^\tau$ for some cardinal τ, then it is 2^τ-condensed.
In [10], the following result was proved.

Theorem 2.7. Let \(<X, T>\) be a Tychonoff space. Let \(\tau\) be an infinite cardinal such that \(\tau < cf(S(<X, T>))\). Suppose that \(X\) is \(2^\tau\)-condensed and that \(X\) has a partition consisting of \(\tau\)-many OHI dense subsets. Then \(T\) has a Tychonoff expansion \(U \supset T\) with dispersion character \(\geq od(<X, T> \cdot \tau)\) which is \(\tau\)-resolvable but not \(S(<X, T>)\)-resolvable.

In particular, the following theorem holds.

Theorem 2.8. Assuming Luzin's Hypothesis. There exists an \(\omega\)-resolvable Tychonoff space of size \(\omega_1\) which is not maximally resolvable.

Hence, we have the following result.

Theorem 2.9. If there exists an \((\omega, \kappa)\)-mif on \(\kappa\) of size \(2^\kappa\) with open density \(<\kappa\), then there exists an \(\omega\)-resolvable Tychonoff space which is not maximally resolvable.

3. \((\omega, \kappa)\)-MIF OF SMALL SIZE

As usual, for any cardinal \(\kappa\), we let \(\log(\kappa) := \min\{\theta : 2^\theta \geq \kappa\}\). Let us call an \((\omega, \kappa)\)-independent family \(\mathcal{I}\) on \(\kappa\) of small size if \(\log(|\mathcal{I}|) < \kappa\). In this section, we prove that if there exists an \((\omega, \omega_1)\)-mif of small size, then there exists an \(\omega\)-resolvable Tychonoff space which is not maximally resolvable.

It is not known to us that whether there exists an \((\omega, \kappa)\)-mif of small size. In particular, we do not know whether there exists a dense irresolvable subset of size and open density \(\omega_1\) in the Cantor cube \(\{0, 1\}^\tau\). Note that it is showed, in [13] under the assumption of Martin’s Axiom, and later in [1] in ZFC, that there exist irresolvable dense subsets in \(\{0, 1\}^\tau\) and hence an irresolvable dense subset of size \(\omega_1\) by augmenting a discrete spaces.

Lemma 3.1. Let \(D\) be a dense irresolvable subset of \(\{0, 1\}^\tau\) with \(\Delta(D) = \kappa\). Then there exists a hereditarily irresolvable dense subset of \(\{0, 1\}^\tau\) such that \(od(D) \geq \kappa\).

Proof. Since \(D\) is an irresolvable dense subset of \(\{0, 1\}^\tau\), there is an \((\omega, \kappa)\)-mif \(\mathcal{I}\) on \(D\) which is also maximally independent.
Since D is irresolvable, there is a non-empty open and hereditarily irresolvable subset U of D. Without loss of generality, we can assume that U is a basic open set, i.e., a set of the form $U = I_1 \cap \ldots \cap I_n \cap D \setminus J_1 \cap \ldots \cap D \setminus J_m$ for some $\{I_1, \ldots, I_n, J_1, \ldots, J_m\} \subseteq \mathcal{I}$. Certainly, $\Delta(U) = \kappa$. It remains to see that $od(U) = \kappa$.

Suppose $od(U) = \theta < \kappa$. Then for some basic open set O of U, there is a dense subset D of O such that $|D| = d(O) = \theta < \kappa$. Since the dispersion character of O is κ, the set D cannot contain any open subset of O. Hence the set $O \setminus D$ is also dense in O. This implies that O is not irresolvable, contrary to the assumption that $U \supseteq O$ is a hereditarily irresolvable space. \hfill \Box

From this lemma, we have the following direct corollary.

Corollary 3.2. Let \mathcal{I} be a separated (ω, κ)-independent family such that the induced topology is open-hereditarily irresolvable. Then $od(\mathcal{I}) = \kappa$.

Lemma 3.3. Suppose \mathcal{I} is an (ω, κ)-mif of size τ on κ. If \mathcal{I} is not maximally independent, then there exists a cardinal $\theta < \kappa$ such that $\tau \leq 2^\theta \leq 2^\kappa$.

Proof. Since \mathcal{I} is not maximally independent, there exists a subset $D \subseteq \kappa$ such that $\{D\} \cup \mathcal{I}$ is an independent family properly containing \mathcal{I}. Since \mathcal{I} is already maximally (ω, κ)-independent, there exists $\{I_1, \ldots, I_n, J_1, \ldots, J_m\}$ such that the set $W = I_1 \cap \ldots \cap I_n \cap (\kappa \setminus J_1) \cap \ldots \cap (\kappa \setminus J_m) \cap D$ has size θ for some cardinal $\theta < \kappa$. The fact that \mathcal{I} is an independent family implies that on the subset $W \subseteq \kappa$, the induced topology inherited from \mathcal{I} has weight τ. Since $|W| = \theta$, we have $\tau \leq 2^\theta$. \hfill \Box

Theorem 3.4. Assume the existence of an (ω, ω_1)-mif of small size. Then there exists an ω-resolvable Tychonoff space which is not maximally resolvable.

Proof. By Theorem 2.1, we know that on ω_1 there exists a separated (ω, ω_1)-mif \mathcal{I} of size τ which is not maximally independent.

By Lemma 3.3, we know that there exists a cardinal $\theta < \omega_1$ such that $\tau \leq 2^\theta = 2^\omega \leq 2^{\omega_1}$. Let $D_1 \subseteq \kappa$ be such that $\{D_1\} \cup \mathcal{I}$ is an independent family properly containing \mathcal{I}.

Since \mathcal{I} is a maximal (ω, ω_1)-independent family, the space $<\omega_1, \mathcal{I}>$ is not an ω_1-resolvable space.
We use the following process to define for $n < \omega$ a dense subset E_n of the space $< \omega_1, I >$ and an independent family I_n on E_n.

For $n < \omega$, repeat the following process until impossible. Let $E_1 = \omega_1 \setminus D_1$. On E_1, the family I induces an (ω, ω_1)-mif I_1. Certainly, I_1 is still maximally (ω, ω_1)-independent, since E_1 is a dense subset of $< \omega_1, I >$. If I_1 is already maximally independent, then stop. If I_1 is not maximally independent, we let $D_2 \subset E_1$ be such that $I_1 \cup \{D_2\}$ is an independent family properly containing I_1. We let $E_2 = E_1 \setminus D_2$, and let I_2 be the independent family of I_1 restricted to E_2. The same reason shows that I_2 is also maximally (ω, ω_1)-independent.

If E_n and I_n have been defined for all $n < \omega$, then the family \{$D_n : n < \omega$\} is a disjoint family of dense subsets of the space $< \omega_1, I >$. In this case, the space $< \omega_1, I >$ is an ω-resolvable Tychonoff space which is not maximally resolvable.

We will show, in the following, that if the process stops at a step n for some $n < \omega$, i.e, I_n is already maximally independent, then we can construct an ω-resolvable, not maximal resolvable, Tychonoff space. Clearly, in this case, the space $< E_n, I_n >$ is an irresolvable Tychonoff space, and $|I_n| = |I| = \tau \leq 2^\omega \leq 2^{\omega_1}$.

By a standard result from the subject of resolvable space (see [9]), the space $< E_n, I_n >$ has an basic open set $U \subset E_n$ such that U with the topology inherited from I_n is hereditarily irresolvable. On the set U, the family I_n induces an independent family J. Hence $< U, J >$ is a hereditarily irresolvable Tychonoff space with dispersion character ω_1. Certainly, $|J| = |I_n| = \tau$. By Theorem 2.2(2), the space $< U, J >$ is homeomorphic to a dense subset D of the Cantor cube $\{0, 1\}^\tau$. Certainly, $|D| = |U| = |E_n| = \omega_1$. Since D with the topology inherited from $\{0, 1\}^\tau$ is hereditarily irresolvable and has dispersion character ω_1, we can use the argument from Lemma 3.1 to show that $od(D) = \omega_1$.

Let $< D >$ be the subgroup generated by D, and let $X = \bigcup_{n < \omega} x_nD$ be such that the infinitely many cosets $x_n < D >$ are distinct. Then X with the topology inherited from $\{0, 1\}^\tau$ is a Tychonoff space which is the union of ω-many HI, dense subspaces with size and open density ω_1. Since $\tau \leq 2^\omega$, the space X is 2^{ω_1}-condensed. Hence, by Theorem 2.7, the space has a Tychonoff expansion that is ω-resolvable but not maximally resolvable. □
We have shown that if either there exists an \((\omega, \omega_1)\)-mif of size \(2^{\omega_1}\) with open density \(\omega\), or there exists an \((\omega, \omega_1)\)-mif \(I\) of small size, i.e. \(|I| \leq 2^{\omega}\), then there exists an \(\omega\)-resolvable, not maximally resolvable, Tychonoff space of size \(\omega_1\). As to the remaining case and the relation between maximal \((\omega, \kappa)\)-independent families and examples of \(\omega\)-resolvable but not maximally resolvable spaces, the following question remains open.

Problem 3.5. Assume that every \((\omega, \omega_1)\)-mif on \(\omega_1\) is of open density \(\omega_1\) and of size \(\tau\) such that \(\log(\tau) = \omega_1\). Is there an \(\omega\)-resolvable, but not maximally resolvable, Tychonoff space?

References

Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA

E-mail address: whu01@wesleyan.edu