COMPACTIFICATIONS OF BAIRE SPACES κ^ω

A. SZYMANSKI

ABSTRACT. We show that the space of irrationals can be compactified in such a way that the remainder is the union of, apriori prescribed, countably many compact spaces each of weight not exceeding ω_1. We show that any Baire space of an uncountable weight has a compactification such that its remainder is a σ-discrete space.

1. Compactifying Baire spaces of uncountable weight

The Cartesian product of countably many copies of an infinite discrete space of cardinality κ is called the Baire space of weight κ. The Baire space of weight ω is homeomorphic to the space of irrational numbers.

No Baire space of any uncountable weight can have a compactification whose remainder is going to be the union of finitely many metrizable subspaces. We shall show that there is a one whose remainder is the union of countably many discrete (just metrizable) subspaces.

Throughout our discussion, we treat cardinals as von Neumann ordinals endowed with the discrete topology. Let κ be an uncountable cardinal. The symbol $\leq^\omega \kappa$ denotes the complete tree of height $\omega + 1$, i.e.,

$$\leq^\omega \kappa = <^\omega \kappa \cup^\omega \kappa,$$

where

$$<^\omega \kappa = \{s : s is a function and Dom(s) \in \omega and Rng(s) \subseteq \kappa\}$$

and

$$\omega \kappa = \{s : s is a function and Dom(s) = \omega and Rng(s) \subseteq \kappa\}.$$

2000 Mathematics Subject Classification. 54A25, 54D30.

Key words and phrases. Compact space, the Bare space of weight κ, metrizability number.
If \(s \in ^{<\omega} \kappa \) and \(\alpha \in \kappa \), then \(s \upharpoonright \alpha \) denotes the concatenation of \(s \) by \(\alpha \).

For each \(n \in \omega \), let \(L_n = \{ t \in ^{<\omega} \kappa : |t| = n \} \) and \(T_n = \{ t \in ^{<\omega} \kappa : |t| \leq n \} \).

For each \(s \in ^{<\omega} \kappa \), let \(\text{Cone}(s) = \{ t \in ^{<\omega} \kappa : s \subseteq t \} \).

Let \(X_\kappa \) be the space whose underlying set is \(\omega^\kappa \) which is endowed with the tree topology, i.e., topology generated by sets of the form

\[
\text{Cone}(s) - (\text{Cone}(s \upharpoonright \alpha_1) \cup \text{Cone}(s \upharpoonright \alpha_2) \cup ... \cup \text{Cone}(s \upharpoonright \alpha_k)),
\]

where \(s \in ^{<\omega} \kappa \) and \(\alpha_i \in \kappa \) for each \(i = 1, 2, ..., k \). In the series of simple lemmas that follows we will verify the required properties for the space \(X_\kappa \) to be a required compactification of the Baire space of the uncountable weight \(\kappa \).

Lemma 1. If \(s, t \in ^{<\omega} \kappa \), \(s \neq t \), and \(t \in \text{Cone}(s) - (\text{Cone}(s \upharpoonright \alpha_1) \cup \text{Cone}(s \upharpoonright \alpha_2) \cup ... \cup \text{Cone}(s \upharpoonright \alpha_k)) \) then \(\text{Cone}(t) \subseteq \text{Cone}(s) - (\text{Cone}(s \upharpoonright \alpha_1) \cup \text{Cone}(s \upharpoonright \alpha_2) \cup ... \cup \text{Cone}(s \upharpoonright \alpha_k)) \).

Lemma 2. If \(s, t \in ^{<\omega} \kappa \), \(s \not\subseteq t \), and \(s \not\supseteq t \), then \(\text{Cone}(t) \cap \text{Cone}(s) = \emptyset \).

Lemma 3. If \(s \in ^{<\omega} \kappa \), then \(\text{Cone}(s) \cap ^{\omega} \kappa = \prod \{ C_i : i \in \omega \} \), where \(C_i = \{ s(i) \} \) for each \(i \in \text{Dom}(s) \), and \(C_i = \kappa \) for each \(i \notin \text{Dom}(s) \).

Thus the subspace \(^{\omega} \kappa \) of \(X_\kappa \) is the Baire space of weight \(\kappa \).

Lemma 4. For each \(n \in \omega \), \(L_n \) is a discrete subspace of \(X_\kappa \) (and \(T_n \) is a closed subspace of \(X_\kappa \)).

Proof. If \(s \in L_n \), then \(L_n \cap \text{Cone}(s) = \{ s \} \). \(\square \)

Theorem 5. \(X_\kappa \) is a compactification of the Baire space \(^{\omega} \kappa \).

Proof. The space \(X_\kappa \) is Hausdorff (use Lemma 2). By Lemma 3, the Baire space \(^{\omega} \kappa \) is a dense subspace of the space \(X_\kappa \).

Suppose to the contrary that \(X_\kappa \) is not a compact space. Thus there exists an open cover \(\mathcal{P} \) of \(X_\kappa \) without a finite subcover. Without loss of generality we may assume that \(\mathcal{P} \) consists of the basic open sets. Let \(U_0 \in \mathcal{P} \) be a basic set containing \(\emptyset \in X_\kappa \). Since \(U_0 = \text{Cone}(\emptyset) \setminus (\text{Cone}(\emptyset \upharpoonright \alpha_1) \cup \text{Cone}(\emptyset \upharpoonright \alpha_2) \cup ... \cup \text{Cone}(\emptyset \upharpoonright \alpha_k)) \),
one of $\text{Cone}(\emptyset - \alpha_i)$, $i = 1, 2, ..., k$, cannot be covered by finitely many elements of the cover \mathcal{P}. Thus there exists a sequence s_1 of length 1 such that $\text{Cone}(s_1)$ cannot be covered by finitely many elements of the cover \mathcal{P}.

Suppose that we have defined sequences $s_1, s_2, ..., s_n$ satisfying the following conditions:

(i) For each $k \leq n$, $s_k \in \omega \kappa$ and $\text{Dom}(s_k) = k$;
(ii) $s_1 \subseteq s_2 \subseteq ... \subseteq s_n$;
(iii) For each $k \leq n$, the set $\text{Cone}(s_k)$ cannot be covered by finitely many elements of the cover \mathcal{P}.

Let $U_n \in \mathcal{P}$ be a basic set containing $s_n \in \omega \kappa$. Since $U_n = \text{Cone}(t) \setminus (\text{Cone}(t - \beta_1) \cup \text{Cone}(t - \beta_2) \cup ... \cup \text{Cone}(t - \beta_k))$, s_n must be equal to t, by virtue of Lemma 1. Hence one of $\text{Cone}(s_n - \beta_j)$, $j = 1, 2, ..., k$, cannot be covered by finitely many elements of the cover \mathcal{P}. Thus there exists a sequence s_{n+1} of length $n + 1$ such that $s_n \subseteq s_{n+1}$ and $\text{Cone}(s_{n+1})$ cannot be covered by finitely many elements of the cover \mathcal{P}.

By induction, there exists a sequence $s_0, s_1, ..., s_n, ...$ satisfying the following conditions:

(i) For each $k \in \omega$, $s_k \in \omega \kappa$ and $\text{Dom}(s_k) = k$;
(ii) $s_1 \subseteq s_2 \subseteq ... \subseteq s_n \subseteq ...$
(iii) For each $k > 0$, the set $\text{Cone}(s_k)$ cannot be covered by finitely many elements of the cover \mathcal{P}.

Let $x = \bigcup \{s_k : k \in \omega \}$. Since $x \in \omega \kappa$, there exists U in \mathcal{P} that contains the point x. Thus $x \in \text{Cone}(t) - (\text{Cone}(t - \beta_1) \cup \text{Cone}(t - \beta_2) \cup ... \cup \text{Cone}(t - \beta_k))$. It follows that $t \subseteq x$ and thus $t = s_n$ for some $n \in \omega$. Since $x \in \text{Cone}(t) - (\text{Cone}(t - \beta_1) \cup \text{Cone}(t - \beta_2) \cup ... \cup \text{Cone}(t - \beta_k))$, $s_{n+1} \in \text{Cone}(t) - (\text{Cone}(t - \beta_1) \cup \text{Cone}(t - \beta_2) \cup ... \cup \text{Cone}(t - \beta_k))$ too. By lemma 1, $\text{Cone}(s_{n+1}) \subseteq \text{Cone}(t) - (\text{Cone}(t - \beta_1) \cup \text{Cone}(t - \beta_2) \cup ... \cup \text{Cone}(t - \beta_k))$, a contradiction. \qed

2. Compactifying irrationals

We begin by proving an easy fact.

Lemma 6. Let Y be a compact Hausdorff space and let $p \in Y$ be a non-isolated point. Suppose that X is a compactification of the space $Y - \{p\}$ with remainder Z. Let U be an open neighborhood of the point p in the space Y and let V be an open neighborhood of a point $x \in Z$. Then $U \cap V \neq \emptyset$.

Proof. The set $F = X - U$ is a compact subset of the space $Y - \{p\} \subset X$. So $V - F$ is an open neighborhood of the point x. Hence $\emptyset \neq (V - F) \cap (Y - \{p\}) \subseteq V \cap U$. \hfill \Box

Let \mathcal{R} be the class of all compact Hausdorff spaces that can be used as a remainder of some compactification of the discrete countable space ω. According to Parovičenko’s theorem (cf. [1]), any compact Hausdorff space of weight not exceeding ω_1 is in \mathcal{R}.

Lemma 7. Let $Y = \oplus\{X_n : n \in \omega\}$ be the topological sum of compact Hausdorff spaces X_n. If $Z \in \mathcal{R}$, then there exists a compactification X of the space Y such that the remainder $X - Y$ is homeomorphic to Z.

Proof. Without loss of generality, we may assume that Y and Z are disjoint. Let \tilde{X} be a compactification of the discrete space ω such that the remainder $\tilde{X} - \omega$ is homeomorphic to Z. For any open set U of the space \tilde{X} such that $U \cap Z \neq \emptyset$, let $e(U) = \oplus\{X_n : n \in U \cap \omega\} \cup (U \cap Z)$. We take X to be the set $Y \cup Z$ with topology generated by the sets that are open subsets of the space Y or of the form $e(U)$. \hfill \Box

Lemma 8. Let Y be a compact Hausdorff space and let $p \in Y$ be a non-isolated point that has a countable base of closed-open subsets of Y. If $Z \in \mathcal{R}$, then there exists a compactification X of the space $Y - \{p\}$ such that the remainder $X - (Y - \{p\})$ is homeomorphic to Z.

Let C be a compact Hausdorff space and let $\{d_n : n \in \omega\}$ be an enumeration of a countable subset of C. Suppose further that each point d_n is non-isolated and has a countable base of closed-open subsets of C. Let $Z_n \in \mathcal{R}$ for each $n = 1, 2, \ldots$. By induction, we define a sequence of spaces $\{C_n : n \in \omega\}$ as follows:

- $C_0 = C$;
- $C_{n+1} = \text{a compactification of the space } C_n - \{d_n\}$ such that the remainder $C^*_{n+1} = C_{n+1} - (C_n - \{d_n\})$ is homeomorphic to the space Z_{n+1} (such a compactification exists by virtue of Lemma 8).

For $n = 1, 2, \ldots$, let p_n be the natural projection from C_n to C_{n-1}, i.e.,

$$p_n(x) = \begin{cases} d_{n-1}, & \text{if } x \in C^*_n \\ x, & \text{if } x \notin C^*_n \end{cases}.$$
Lemma 9. For \(n = 1, 2, \ldots \), \(p_n : C_n \to C_{n-1} \) is continuous.

Proof. Let \(U \) be an open neighborhood of the point \(d_{n-1} \) in the space \(C_{n-1} \). The set \(F = C_{n-1} - U \) is a compact subset of the space \(C_n \). Clearly \(p_{n-1}^{-1}(U) = (U - \{d_{n-1}\}) \cup Z = C_n - F \). In consequence, the set \(p_{n-1}^{-1}(U) \) is open in the space \(C_n \). □

Let us consider the inverse sequence

\[
C_0 \leftarrow^{p_1} C_1 \leftarrow^{p_2} C_2 \leftarrow^{p_3} \ldots \leftarrow^{p_{n-1}} C_n \leftarrow^{p_n} \ldots
\]

and its limit \(X \), i.e.,

\[
X = \left\{ (x_i) \in \prod \{C_i : i \in \omega \} : p_n(x_n) = x_{n-1} \text{ for } n = 1, 2, \ldots \right\}.
\]

Lemma 10. \(X \) is a compact Hausdorff space.

Let \(M_0 = \left\{ (x_i) \in \prod \{C_i : i \in \omega \} : x_i = x \text{ for } i \in \omega \text{ and } x \in C - \{d_n : n \in \omega \} \right\} ; \)

If \(n > 0 \), \(M_n = \left\{ (x_i) \in \prod \{C_i : i \in \omega \} : x_i = d_{n-1} \text{ for } i = 0, 1, 2, \ldots, n-1 \text{ and } x_i = x \text{ for } i \geq n \text{ and } x \in C_n^* \right\} \). The sets \(M_n, n \in \omega \), are pairwise disjoint.

Lemma 11. \(M_0 \) and \(C - \{d_n : n \in \omega \} \) are homeomorphic.

Lemma 12. For each \(n = 1, 2, \ldots \), \(M_n \) and \(Z_n \) are homeomorphic.

Both lemmas, above, follow immediately from the following one:

Lemma 13. Let \(\prod \{X_\alpha : \alpha \in S \} \) be the product of spaces \(X_\alpha \), where \(X_\alpha = X \) for each \(\alpha \in S \). Then the diagonal \(\Delta = \{(x_\alpha) \in \prod \{X_\alpha : \alpha \in S \} : x_\alpha = x \text{ for each } \alpha \in S \text{ and } x \in X \} \) and the space \(X \) are homeomorphic.

Proof. Let \(h : X \to \Delta \) be defined as follows:

\[
h(x) = (x_\alpha), \text{ where } x_\alpha = x \text{ for each } \alpha \in S.
\]

One can easily see that if \(A \subseteq X \) and \(\alpha \in S \) and \(\pi_\alpha : \prod \{X_\alpha : \alpha \in S \} \to X_\alpha \) is a natural projection, then \(h(A) = \Delta \cap \pi_\alpha^{-1}(A) \). □

Lemma 14. \(X = \bigcup \{M_n : n \in \omega \} \).
Proof. Let \((x_i) \in X\). Consider the following two cases:

Case (a) \(\forall i \; x_i = x_{i+1}\);

Case (b) \(\exists i \; x_i \neq x_{i+1}\).

In case (a), let \(x = x_i\) for each \(i\). Since \(x_0 = x, \; x \in C\). Clearly, \(x \neq d_n\) for each \(n \in \omega\) (for if \(x = d_n\), then \(p_{n+1}(x_{n+1}) = d_n = x\) and \(x = x_{n+1} \in C^*_n\); a contradiction). Hence \((x_i) \in M_0\).

In case (b), since \(p_{i+1}(x_{i+1}) = x_i, \; x_{i+1} \in C^*_n\) and \(x_i = d_i\). Thus \(x_j = d_i\) for each \(j \leq i\), and \(x_j = x_{i+1}\) for each \(j \geq i + 1\). Hence \((x_i) \in M_{i+1}\).

Lemma 15. Let \(U = U_0 \times U_1 \times \ldots \times U_n \times C_{n+1} \times C_{n+2} \times \ldots\) be an open basic subset of the product \(\prod \{C_i : i \in \omega\}\). If \(U \cap X \neq \emptyset\), then \((U_0 \cap U_1 \cap \ldots \cap U_n) \cap (C - \{d_0, d_1, \ldots, d_{n-1}\}) \neq \emptyset\).

Proof. By Lemma 14, \(U \cap M_k \neq \emptyset\) for some \(k \in \omega\). If \(k = 0\), then there exists \(x \in C - \{d_n : n \in \omega\}\) such that \((x_i) \in U\) and \(x_i = x\) for each \(i \in \omega\). Hence \(x \in U_0 \cap U_1 \cap \ldots \cap U_n\). Thus \((U_0 \cap U_1 \cap \ldots \cap U_n) \cap (C - \{d_0, d_1, \ldots, d_{n-1}\}) \neq \emptyset\). Let \(k > 0\) and let \((x_i) \in U \cap M_k\). Thus there exists \(x \in C^*_k\) such that

\[
 x_i = \begin{cases}
 d_{k-1}, & \text{if } i < k \\
 x, & \text{if } i \geq k
 \end{cases}
\]

If \(k > n\), then \(d_{k-1} \in U_0 \cap U_1 \cap \ldots \cap U_n\). Assume that \(k \leq n\). The set \(U = \bigcap \{U_i : i \leq k - 1\} \cap (C - \{d_0, d_1, \ldots, d_{k-2}\})\) is an open neighborhood of the point \(d_{k-1}\) in the subspace \((C - \{d_0, d_1, \ldots, d_{k-2}\})\).

The set \(V = \bigcap \{U_i : k \leq i \leq n\}\) an open neighborhood of the point \(x\) in the space \(C_k\). By Lemma 6, \(U \cap V \neq \emptyset\). \(\square\)

Lemma 16. \(M_0\) is a dense subset of \(X\).

Proof. Let \(U = U_0 \times U_1 \times \ldots \times U_n \times C_{n+1} \times C_{n+2} \times \ldots\) be an open basic subset of the product \(\prod \{C_i : i \in \omega\}\) such that \(U \cap X \neq \emptyset\).

By Lemma 15, \((U_0 \cap U_1 \cap \ldots \cap U_n) \cap (C - \{d_0, d_1, \ldots, d_{n-1}\}) \neq \emptyset\). In consequence, \((U_0 \cap U_1 \cap \ldots \cap U_n) \cap (C - \{d_n : n \in \omega\}) \neq \emptyset\). If \(x \in (U_0 \cap U_1 \cap \ldots \cap U_n) \cap (C - \{d_n : n \in \omega\})\) and \((x_i)\) is such that \(x_i = x\) for \(i \in \omega\), then \((x_i) \in U \cap M_0\). \(\square\)

Lemma 17. If \(\{d_n : n \in \omega\}\) is a dense subset of \(C\), then \(\{M_n : n \geq 1\}\) is a \(\pi\)-net in \(X\).

Proof. Let \(U = U_0 \times U_1 \times \ldots \times U_n \times C_{n+1} \times C_{n+2} \times \ldots\) be an open basic subset of the product \(\prod \{C_i : i \in \omega\}\) such that \(U \cap X \neq \emptyset\).
By Lemma 15, $\left(U_0 \cap U_1 \cap ... \cap U_n \right) \cap \left(C - \{d_0, d_1, ..., d_{n-1}\} \right) \neq \emptyset$. In consequence, $U_0 \cap U_1 \cap ... \cap U_n$ contains infinitely many elements among $\{d_n : n \in \omega\}$. Pick any m such that $m > n$ and $d_m \in U_0 \cap U_1 \cap ... \cap U_n$. Then $M_m \subseteq U$. □

Theorem 18. There exists a compactification X of the space of irrational numbers ω^ω such that: (i) $X - \omega^\omega = \bigcup \{M_n : n \geq 1\}$, (ii) $\{M_n : n \geq 1\}$ is a π-net in X, (iii) For each $n = 1, 2, ..., M_n$ and Z_n are homeomorphic.

3. Applications

The metrizability number $m(X)$ of a space X is the smallest cardinal number κ such that X can be represented as a union of κ many metrizable subspaces. In [2] we showed that compact Hausdorff spaces with finite metrizability number can be represented as follows:

Theorem 19. If X is a (locally) compact Hausdorff space with $m(X) = n$, $2 \leq n < \omega$, then X can be represented as $X = G \cup F$, where G is an open dense metrizable subspace of X, $F \cap G = \emptyset$, and $m(F) = n - 1$.

A similar representation theorem may not hold for compact Hausdorff spaces with countable metrizability number.

Theorem 20. There exists a compact Hausdorff space X with a countable π-base such that $m(U) = \omega$ for each non-empty open subset U of X.

Proof. Let X be the space constructed from the Cantor set C, an arbitrary countable dense subset $\{d_n : n \in \omega\}$, and from Z_n that is e.g., the one-point compactification of a discrete space of cardinality \aleph_1, for each $n = 1, 2, ...$. □

Theorem 21. If M is a zero-dimensional metrizable space, then M has a compactification Y such that $Y \setminus M$ is a union of countably many discrete subspaces of Y.

Proof. The space M can be embedded into a Baire space κ^ω. Let X be the compactification of the Baire space κ^ω as given in Theorem 5. Then the closure of M in the space X gives the required compactification Y. □
REFERENCES

Department of Mathematics, Slippery Rock University, Slippery Rock, PA 16057
E-mail address: andrzej.szymanski@sru.edu