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CERTAIN ANALYTIC PREIMAGES OF
PSEUDOCIRCLES ARE PSEUDOCIRCLES

DAVID P. BELLAMY

Abstract. In the plane of complex numbers, the inverse im-
age of a pseudocircle X under the map z → zn is again a
pseudocircle provided zero is in the bounded complementary
domain of X.

1. Introduction

The question of what properties of plane continua are preserved
by lifting to preimages under analytic functions has interested me
for many years. Since Vladimir N. Akis [1] has shown that an ana-
lytic function which keeps invariant a non-separating plane contin-
uum has a fixed point in that continuum, the relationship between
the properties of plane continua and properties of their images or
preimages under analytic functions has assumed new importance.

Herein a pseudocircle is a planar hereditarily indecomposable
circle-like continuum which is not chainable. The first such contin-
uum was constructed by R. H. Bing in [2]. In [3], Lawrence Fearnley
proved that any two pseudocircles are homeomorphic. For further
background on pseudocircles, the reader may wish to consult [8],
[4], [5], [6], and the papers cited in these.
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2. Notation and results

Lemma 1. Let M,O be subsets of Rn with M compact, O open
in Rn, and M ⊆ O. Then there exists ε > 0 such that whenever
L ⊆ M and the diameter of L is less than ε, it follows that the
convex hull of L is a subset of O.

Proof: The set M admits a finite open cover by sets of the form
U ∩ M where U ⊆ O and U is a convex open set. Let ε be the
Lebesque number of this covering. ¤

In the results and proofs below, the following notation and ter-
minology will be used. The field of complex numbers, with its
usual topology, is denoted C; n is a fixed integer greater than 1;
f : C → C is the map f(z) = zn; X ⊆ C is a continuum which
separates C and has 0 in a bounded complementary domain B;
U is the unbounded complementary domain of X; D1 and D2 are
circular disks centered at 0 with D2 ⊆ B and X ⊆ Int D1;A is
the annulus D1\Int D2 (thus, X ⊆ Int A). A half-plane of C, the
boundary line of which contains 0, is called a standard half-plane.
The closed convex hull of any set J ⊆ C will be denoted H(J). Fi-
nally, if H(J) ⊆ A, a piece of f−1(J) is a set of the form f−1(J)∩K,
where K is a component of f−1(H(J)).

Lemma 2. Suppose J is a set and H(J) ⊆ A. Then J lies in the
intersection of A with some standard half-plane.

Proof: Let S be a circle centered at zero with S ⊆ IntD2. Let
x denote the point of H(J) nearest to 0. By rotating if necessary,
assume x is on the positive real axis. Let T1 and T2 be the tangent
lines to S through x, labeled so that T1 has negative slope and T2

has positive slope. Each of T1
⋂

D1 and T2
⋂

D1 is a chord of the
circle Bd(D1), tangent to S. Note that looking outward from 0,
every line T tangent to S has a left and a right half-line from the
point of tangency with S; furthermore, every such line is uniquely
determined by its point of tangency with S. Let T (z) be the line
tangent to S at z. Define two sets L,R ⊆ S by:

L = {z ∈ S|T (z) intersects H(J) on its right side}
R = {z ∈ S|T (z) intersects H(J) on its right side}
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Let t1, t2 be the points of tangency of T1, T2, respectively, with S.
Then t1 ∈ R and t2 ∈ L. Since H(J) is compact it follows that R
and L are both closed in S, and R∩L = φ, since if for some z ∈ S,
the tangent line T (z) to S at z meets H(J) at a point on each side,
then the line segment joining them contains z, and so z ∈ H(J),
which is impossible since H(J) ⊆ A and z 6∈ A.

Now, let M be the minor arc of S from t1 to t2. M 6⊆ R∪L since
M is connected. Let m ∈ M\(R∪L). Then T (m) does not intersect
H(J). Since x is on the opposite side of T (m) from t1 and t2 and
hence on the opposite side from 0, and H(J) is connected, it follows
that H(J) is a subset of the standard half-plane of C containing
x and with boundary line parallel to T (m). Since H(J) ⊆ A by
hypothesis, the proof is done. ¤

Lemma 3. The set f−1(X) is a continuum with 0 in its bounded
complementary domain, just as X is.

Proof: Let X̂ denote the union of X with all its complementary
domains, if any, except for B and U . That is, X̂ = C\(B ∪U). ¤

Then f−1(B)∪f−1(X̂)∪f−1(U) = C. Also, f−1(B) and f−1(U)
are open and disjoint from each other and from f−1(X̂) . Thus,
f−1(X̂) separates C ; and 0 is in the bounded complementary do-
main, f−1(B), of f−1(X̂). However, f−1(B) and f−1(U) are com-
plementary domains of f−1(X) also. To see this suppose J is
an arc from a point in f−1(B) to a point not in f−1(B). Then
J ∩ f−1(B) is open in J and J ∩M is also open in J , where M =⋃{f−1(W )|W is a complementary domain of X in C and W 6=
B}.

Since J * f−1(B), if J ∩ f−1(X) = φ, it follows that (J ∩
f−1(B)) ∪ (J ∩M) is a separation of J , which is impossible.

Thus, f−1(X) separates C between 0 and∞, and so some compo-
nent K of f−1(X) also does. Suppose K 6= f−1(X). Then f−1(X)
has another component K1 6= K, and f(K1) = f(K) = X, since
f |f−1(D1) : f−1(D1) → D1 is open and hence confluent.

Let L denote the nonnegative real axis in C, and let {Lj}n
j=1

denote the collection of rays from 0 such that f−1(L) =
n⋃

j=1
Lj .

Let a, b ∈ L ∩ X be the points such that a is the point of L ∩ X
nearest to 0, while b is the point of L ∩ X furthest from 0. Let



22 D. P. BELLAMY

L̃ ⊆ L be the line segment from 0 to a, while L̂ ⊆ L is the ray with
endpoint b. For each j let L̃j = f−1(L̃)∩Lj and L̂j = f−1(L̂)∩Lj .

Then, f−1(a) ⊆
n⋃

j=1
L̃j and f−1(b) ⊆

n⋃
j=1

L̂j . Therefore, for some

j, k, K1 ∩ L̃j 6= φ and K1 ∩ L̂k 6= φ. It follows that L̃j ∪ K1 ∪
L̂k is an unbounded connected set containing 0 and missing K, a
contradiction. Therefore, f−1(X) is connected.

Lemma 4. If X is circularly chainable, so is f−1(X).

Proof: Let ε > 0 be arbitrary. A circular chain cover of f−1(X)
consisting of open sets of diameter less than ε can be constructed
as follows: Note that for any standard half-plane H, each branch of
f−1 is uniformly continuous on H ∩A. Using this fact and Lemma
1, there exists δ > 0 such that both the following hold.

i) Whenever x, y ∈ f−1(A) and the angular separation from 0
between x and y is less than π

n and d(f(x), f(y)) < δ, then
d(x, y) < ε.

ii) Whenever M ⊆ X and diaM < 3δ, it follows that H(M) ⊆
IntA.

Now, let {Ui}p
i=1 be a circular chain of open sets, each of diameter

less than δ, covering X. Addition of subscripts of these Ui’s will
always be taken modulo p. Note that by ii) and Lemma 2, the
union of any three consecutive links of {Ui}p

i=1 is contained in some
standard half plane. Define an open cover V of f−1(X) by V = {V |
for some j, V is a piece of f−1(Uj)}.

By i), it follows that each V ∈ V has diameter less than ε. It
remains to be shown that V is a circular chain.

Since for every j, H(Uj−1 ∪Uj ∪Uj+1) is evenly covered by f |A,
each V ∈ V meets exactly two other members of V. Hence, the
nerve of V is a 2-regular graph. Such a finite graph is either a
simple cycle or a union of disjoint cycles. Since X is connected, the
nerve is a single cycle, so that V is a circular chain. ¤
Corollary to Proof. If X is circularly chainable and ε > 0, then
there exists δ > 0 such that whenever {Uj}p

j=1 is a circular chain of
p links consisting of open subsets of X, each of diameter less than
δ, then the collection {V | for some j, V is a piece of f−1(Uj)} is
a circular chain of np links each of which is an open subset of
f−1(x) of diameter less than ε. Furthermore, this circular chain
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can be indexed as {Vk}np
k=1 in such a way that for every nonnegative

integer m < n, Vmp+j is a piece of f−1(Uj) (and, of course, such
that for each k, Vk ∩ Vk+1 6= φ, where k + 1 is taken modulo np.)

Proof: This follows from examination of the structure of the
circular chain V constructed in the proof of Lemma 4. ¤

Lemma 5. If X is circularly chainable and hereditarily indecom-
posable, then for each proper subcontinuum L ⊆ f−1(X), f |L : L →
f(L) is a homeomorphism.

Proof: Suppose X is circularly chainable and hereditarily inde-
composable, and suppose L ⊆ f−1(X) is a proper subcontinuum.
Then L is chainable.

By Theorem 14 of [9, p. 234], L cannot be continuously mapped
onto X. Thus, f(L) is a proper subcontinuum of X. Since X
is hereditarily indecomposable, f(L) is nowhere dense in X. Since
f |f−1(X) : f−1(X) → X is an open mapping, f−1(f(L)) is nowhere
dense in f−1(X).

Let ε > 0 be small enough that any circular chain of open sets,
each of diameter less than ε, covering f−1(X) has at least one
link missing f−1f(L)). Let δ > 0 be the number guaranteed by
the Corollary to the proof of Lemma 4 corresponding to ε, and
let {Uj}p

j=1 be a circular chain of mesh less than δ covering X.
Let {Vk}np

k=1 be the circular chain cover of f−1(X) obtained from
{Uj}p

j=1 as in this same Corollary. Then, for some k, Vk ∩ L = φ.
By renumbering {Vk}np

k=1 and {Uj}p
j=1, it can be guaranteed that

Vp ∩ f−1(f(L)) = φ. Thus, Up ∩ f(L) = φ. It follows that for
1 ≤ m ≤ n, Vmp ∩ f−1(f(L)) = φ, so that the continuum L is
contained in the union of some subchain {Vmp+j}p−1

j=1 of {Vj}np
j=1.

Again with no loss of generality, assume L ⊆
p−1⋃
j=1

Vj .

Let r : f−1(A) → f−1(A) denote the rigid rotation through
an angle of 2π

n . Then r is a generator of the group of covering
transformations for f |f−1(A), so f ◦ rm = f for each integer m.
Since r permutes the set {Vmp}n−1

m=0, it also permutes the subchains
into which the removal of the Vmp’s partition {Vj}np

j=1. Hence, each
such subchain {Vmp+j}p−1

j=1 contains a component of f−1f(L); call
this component Lm. Then for x ∈ L and 0 ≤ m < n, rm(x) ∈ Lm.
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Since there are n such points rm(x) and each Lm contains one,
there can be no point except x in f−1(f(x)) ∩ L. Thus, f |L is one
to one. ¤

3. Main result

Theorem. Suppose X is a pseudocircle in C with the point zero
in its bounded complementary domain. Define f : C → C by
f(z) = zn, where n is any nonzero integer. Then f−1(X) is also a
pseudocircle.

Proof: Let X be a pseudocircle in the complex plane C with 0 in
its bounded complementary domain. Let f : z → zn, as above. By
Lemma 5, every proper subcontinuum of f−1(X) is homeomorphic
to a proper subcontinuum of X. Since every proper subcontinuum
of X is a pseudoarc, so is every proper subcontinuum of f−1(X).
Thus, f−1(X) is hereditarily indecomposable. Since by Lemma 4,
f−1(X) is circularly chainable, it follows from the principal result
in [3] that f−1(X) is homeomorphic with X. The Theorem follows
for n < 0 since the map g : z → 1/z is a homeomorphism on
C\{0}. ¤

The notation in these questions is the same as used above.

Question 1. Suppose X is any hereditarily indecomposable con-
tinuum in C which is irreducible with respect to the property of
separating 0 from ∞. Is f−1(X) always a hereditarily indecompos-
able continuum?

Question 2. Suppose X is a hereditarily indecomposable contin-
uum in C and that the pseudocircle X ′ is a proper subcontinuum
of X. Is it possible that f−1(X) can also be hereditarily indecom-
posable? (It is possible for f−1(X) to be decomposable.)
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