NOTES ON \textit{g-METRIZABLE SPACES}

CHUAN LIU

\textsc{Abstract.} A space is called a g-metrizable space if it is a regular space with a σ-locally finite weak base (see F. Siwiec, “On Defining a Space by a Weak Base”). In this paper, we discuss spaces with a σ-HCP (wHCP) weak base and give answers or partial answers to questions posed by A. V. Arhangel’skii during a seminar in 2004 at Ohio University, by S. Lin in a personal communication, and by Y. Tanaka in “σ-Hereditarily Closure Preserving k-Networks and g-Metrizability.”

1. Introduction

Weak base was introduced by A. V. Arhangel’skii [1] in 1966. Frank Siwiec [14] defined g-metrizable spaces as a spaces with a σ-locally finite weak base. Yoshio Tanaka [16], L. Foged [4], Shou Lin [8], and Chuan Liu and Mu Min Dai [11] have made much contribution on this field. We discuss topological spaces with a σ-HCP (wHCP) weak base and give answers or partial answers to Lin’s, Arhangel’skii’s and Tanaka’s questions.

In this paper all spaces are regular and T_1; all mappings are continuous and onto. \mathbb{N} denotes the natural numbers. Readers may refer to [6] for unstated definitions.

\footnotesize{\textsc{2000 Mathematics Subject Classification.} Primary 54E40; Secondary 54D55. \textsc{Key words and phrases.} g-metrizable space, g-second countable space; weak base, sn-network .

207}
2. g-METRIZABLE SPACES

Definition 2.1. Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a cover of a space X such that for each $x \in X$,

1. \mathcal{P}_x is a network of x in X;
2. If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

\mathcal{P} is called a weak base [1] for X if whenever $G \subset X$ satisfying for each $x \in G$ there is $P \in \mathcal{P}_x$ with $P \subset G$, then G is open in X; \mathcal{P} is called an sn-network [9] for X if each element of \mathcal{P}_x is a sequential neighborhood of x in X (i.e., every convergent sequence with the limit point x is eventually in the element) for each $x \in X$.

A space X is called a g-metrizable space [14] (resp., an sn-metrizable space [5]) if it has a σ-locally finite weak base (resp., sn-network), and a space is g-first countable [1], (resp., sn-first countable) if each \mathcal{P}_x is countable. A space is called g-second countable [14] if it has a countable weak base.

A collection $\{C_\alpha : \alpha \in I\}$ of subsets of X is called hereditarily closure preserving, HCP (weakly hereditarily closure preserving, wHCP) [3] if for any $J \subset I$, $\{B_\alpha : B_\alpha \subset C_\alpha, \alpha \in J\}$ is closure preserving ($\{x_\alpha : x_\alpha \in C_\alpha, \alpha \in J\}$ is closed discrete).

Tanaka [16] asked the following.

Question 2.2. If X has a σ-HCP weak base, is X g-metrizable?

By slightly modifying Liang-Xue Peng’s proof in [13], we can obtain the following.

Lemma 2.3. Suppose that X has a σ-closure preserving weak base, then X is hereditary meta-Lindelöf.\(^1\)

Tanaka [16] proved that a Lindelöf space with a σ-HCP weak base is g-second countable and that the following proposition holds under (CH). By using Lemma 2.3, we may omit (CH).

Proposition 2.4. X is g-second countable if and only if X is a separable space with a σ-HCP weak base.

X has property (**) if for any non-isolated point x of X, there is countable subset $D \subset X$ so that $x \in \text{cl}(D \setminus \{x\})$. A space X has property (*) [10] if for any non-isolated point x of X, there is

\(^1\)Lin informed the author that he also obtained this result.
a non-trivial sequence converging to \(x \). Obviously, a space having countable tightness\(^2\) or property (*) has property (**).

Lemma 2.5. Let \(X \) have a \(\sigma \)-HCP weak base. Then \(X \) has property (*) if it has property (**).

Proof: For a non-isolated point \(x \in X \), there is a countable subset \(D \subset X \) with \(x \in cl(D\{x\}) \). By Lemma 2.3, \(cl(D) \) is a Lindelöf space. Tanaka [16] proved that every \(\omega_1 \)-compact space with a \(\sigma \)-HCP weak base is g-first countable. \(cl(D\{x\}) \) is a sequential space; \(X \) has property (*). \(\square \)

The author [10] proved that \(X \) is a g-metrizable space if and only if \(X \) has a \(\sigma \)-HCP weak base and property (*); by Lemma 2.5, we have

Theorem 2.6. \(X \) is g-metrizable if and only if \(X \) has a \(\sigma \)-HCP weak base and property (**).

Corollary 2.7. A space \(X \) is g-metrizable if and only if \(X \) has a \(\sigma \)-HCP weak base and has countable tightness.

Next, we discuss spaces with a \(\sigma \)-wHCP weak base. In [3], it was proved that a k-space with a \(\sigma \)-wHCP base is metrizable, but not every (paracompact) space with a \(\sigma \)-wHCP base is metrizable. Thus, every space with a \(\sigma \)-wHCP weak base need not to be g-metrizable. We don’t know if a k-space with a \(\sigma \)-wHCP weak base is g-metrizable or not. But we have following.

Theorem 2.8. (CH) Suppose \(X \) is a separable space with a \(\sigma \)-wHCP weak base, then \(X \) is g-second countable, hence g-metrizable.

First, let us prove a lemma.

Lemma 2.9. Suppose that \(X \) has a \(\sigma \)-wHCP weak base, then \(X \) has a \(\sigma \)-wHCP k-network\(^3\) and a \(\sigma \)-compact-finite k-network.

Proof: Let \(B = \bigcup_{n \in \mathbb{N}} B_n \) is a \(\sigma \)-wHCP weak base. We may assume \(B_n \subset B_{n+1} \). For each \(n \in \mathbb{N} \), let \(D_n = \{ x \in X : B_n \text{ is not point-finite at } x \} \). Let \(B'_n = \{ B \setminus D_n : B \in B_n \} \cup \{ \{ x \} : x \in D_n \} \).

\(^2\)A space \(X \) has countable tightness if whenever \(x \in cl(A) \) for \(x \in X \) and a subset \(A \) of \(X \), there is a countable subset \(C \subset A \) such that \(x \in cl(C) \).

\(^3\)A cover \(\mathcal{P} \) of subsets of \(X \) is a k-network if, whenever \(K \subset U \) with \(K \) compact and \(U \) open in \(X \), there is a finite subfamily \(\mathcal{F} \subset \mathcal{P} \) such that \(K \subset \bigcup \mathcal{F} \subset U \).
Then B'_n is compact-finite for each n. In fact, let K be a compact subset of X; it is easy to see that $K \cap D_n$ is finite. Notice that \{\{B \setminus D_n : B \in B_n\} is wHCP and point-finite, and K meets at most finitely many elements of \{\{B \setminus D_n : B \in B_n\}. Hence, $B' = \bigcup_{n \in \mathbb{N}} B'_n$ is a σ-compact-finite network. Any compact subset of X has a countable network; hence, it is metrizable. By Proposition A(3) in [17], B is a σ-wHCP k-network. Now we prove that B' is a k-network. Let $K \subset U$ with K compact and U open; there are $m \in \mathbb{N}$ and a finite subfamily P of B_m such that $K \subset \bigcup P \subset U$. Let $F = \{P \setminus D_m : P \in P\} \cup \{\{x\} : x \in K \cap D_m\}$, then $F \subset B'_m \subset B'$ and $K \subset \bigcup F \subset U$. \hfill \Box

Now we give a proof of Theorem 2.8.

Since X is separable, by (CH), the character of X, $\chi(X) \leq \omega_1$. Let $B = \bigcup_{n \in \mathbb{N}} B_n = \bigcup \{P_x : x \in X\}$ is a σ-wHCP weak base. We may assume $B_n \subset B_{n+1}$. First, we prove that X is g-first countable.

For $x \in X$, if $\{x\}$ is open, then X is g-first countable at x. If $\{x\}$ is not open, $B_n \cap P_x$ is locally countable at x for $n \in \mathbb{N}$. Suppose not. Let $\{V_\alpha : \alpha < \omega_1\}$ be the local base at x. Notice that for any neighborhood V of x, $V \cap (P \setminus \{x\}) \neq \emptyset$ for $P \in P_x$. Then, by induction, there are a subset $S = \{x_\alpha : \alpha < \omega_1\}$ of X and a subcollection $\{B_\alpha : \alpha < \omega_1\}$ of $B_n \cap P_x$ such that $x_\alpha \in V_\alpha \cap B_\alpha$, where $x_\alpha \neq x$, and the B_α's are distinct. x is an accumulation of S, so S is not closed. Since B_n is wHCP, S is a closed discrete subset; this is a contradiction. Hence, X is g-first countable. By Lemma 2.9, X has a σ-compact-finite k-network. Under (CH), a separable, sequential space with a σ-compact-finite k-network is an \aleph_0-space\footnote{A space with a countable k-network.} [12]. X is a g-first countable, \aleph_0-space; hence, X is g-second countable [14].

We don’t know if we can omit (CH) or not in the above theorem.

Question 2.10. Is a separable space with a σ-wHCP weak base g-second countable?

We define iterates of the operator seq cl inductively for a space X as follows:

1. $\text{seq } cl^0(S) = S$;
2. $\text{seq } cl(S) = \{x : x$ is a limit point of $S\}$;
(3) if α is an ordinal, let $\text{seq } cl^{\alpha+1}(S) = \text{seq } cl(\text{seq } cl^\alpha(S))$;

(4) if α is a limit ordinal, let $\text{seq } cl^\alpha = \bigcup_{\beta<\alpha} \text{seq } cl^\beta(S)$.

We define iterates of the operator $\text{seq } cl$ inductively for a space X as follows: $\text{seq } cl^0(S) = S$; $\text{seq } cl(S) = \{ x : x \text{ is a limit point of } S \}$; if α is an ordinal, let $\text{seq } cl^{\alpha+1}(S) = \text{seq } cl(\text{seq } cl^\alpha(S))$; if α is a limit ordinal, let $\text{seq } cl^\alpha = \bigcup_{\beta<\alpha} \text{seq } cl^\beta(S)$. If X is sequential space, the sequential order of X is the least ordinal α so that for every subset S of X we have $cl(S) = \text{seq } cl^\alpha(S)$. A subset D of X is ω_1-compact if any subset of D with cardinality ω_1 has a cluster point.

Lemma 2.11. Let X have a σ-wHCP weak base. If $A \subset X$ is ω_1-compact, then $\text{seq } cl(A)$ is ω_1-compact.

Proof: Assume to the contrary that there is a discrete subset $\{x_\alpha : \alpha < \omega_1\}$ in $\text{seq } cl(A) \setminus A$. For $\alpha < \omega_1$, let $\{x_n(\alpha)\} \subset A$ be a sequence converging to x_α. Let $B = \bigcup_{n \in \mathbb{N}} B_n$ be a σ-wHCP weak base of X. We may assume $B_n \subset B_{n+1}$. For each α, there is $B_\alpha \in B$ such that $x_\alpha \in B_\alpha$, B_α contains a tail of $\{x_n(\alpha)\}$, and all $B_\alpha \cap \{x_\beta : \beta \neq \alpha\} = \emptyset$. Without loss of generality, we assume B_α contains $\{x_n(\alpha)\}$ and $B_\alpha \in B_n$ for some n.

Case 1. $|\{x_n(\alpha) : n \in \mathbb{N}, \alpha < \omega_1\}| = \omega_1$.

By induction, there is an uncountable subset $S = \{x_\beta : \beta < \omega_1\}$ of $\{x_n(\alpha) : n \in \mathbb{N}, \alpha < \omega_1\}$ such that $x_\beta \in B_\beta$ and $B_\beta \neq B_\gamma$ if $\beta \neq \gamma$. Since B_n is wHCP, $S \subset A$ is closed discrete; this is a contradiction.

Case 2. $|\{x_n(\alpha) : n \in \mathbb{N}, \alpha < \omega_1\}| \neq \omega_1$.

There exists an α_0 such that infinitely many B_α’s contain a subsequence of $\{x_n(\alpha_0)\}$. Suppose not. For every $\alpha < \omega_1$, there is $m(\alpha)$ such that $\{B_\alpha : \alpha < \omega_1\}$ is point-finite at $x_{m(\alpha)}(\alpha)$. Since $|\{x_{m(\alpha)}(\alpha) : n \in \mathbb{N}, \alpha < \omega_1\}| \neq \omega_1$ and $x_{m(\alpha)}(\alpha) \in B_\alpha$, $\{B_\alpha : \alpha < \omega_1\}$ is not point-finite at some $x_{m(\alpha)}(\alpha)$; this is a contradiction. Thus, infinitely many B_α’s contain a subsequence of $\{x_n(\alpha_0)\}$, then $\{x_n(\alpha_0)\}$ has a subsequence that is discrete, a contradiction. Hence, $\text{seq } cl(A)$ is ω_1-compact.

Theorem 2.12. Let X be a separable space with a σ-wHCP weak base. If the sequential order of X is countable, then X is g-second countable.
Proof: Let $D \subset X$ with $|D| = \omega$, $cl(D) = X$. Since the sequential order of X is countable, $X = \cup_{n \in \mathbb{N}} seq cl^n(D)$. D is ω_1-compact, and $seq cl^n(D)$ is ω_1-compact for each n by Lemma 2.11; hence, X is ω_1-compact. Let $\mathcal{B} = \cup_{n \in \mathbb{N}} \mathcal{B}_n$ be a σ-wHCP weak base of X. For $x \in X$, if x is not an isolated point, then $\mathcal{B} \cap P_x$ is locally countable at x. Suppose not. There is $n \in \mathbb{N}$ such that $\mathcal{B}_n \cap P_x$ is not locally countable at x. By induction, we can select an uncountable subset $\{x_\alpha: \alpha < \omega_1\}$ and an uncountable subfamily $\{\mathcal{B}_\alpha: \alpha < \omega_1\} \subset \mathcal{B}_n$ such that $\{x, x_\alpha\} \subset \mathcal{B}_\alpha$, $x_\alpha \neq x_\beta$ if $\alpha \neq \beta$. $\{x_\alpha: \alpha < \omega\}$ is discrete; this is a contradiction because X is ω_1-compact. Hence, X is g-first countable.

X is ω_1-compact and has a σ-wHCP k-network by Lemma 2.9; hence, X is an \aleph_0-space. Thus, X is g-second countable. □

It is well known that g-metrizable spaces are not preserved by perfect mappings. Arhangel’skii [2], in a topology seminar at Ohio University, asked the following question:

Question 2.13. Let X be a topological space; if every perfect image of X is g-metrizable, is X metrizable?

We shall give an affirmative answer to this question; in fact, we may prove a slightly stronger version.

The sequential fan S_ω is a perfect image of the Arens’ space S_2. It is well known that S_ω is not g-first countable.

Theorem 2.14. Let X be a g-metrizable space. If every perfect image of X has a σ-wHCP weak base, then X is metrizable.

Proof: First, we prove that a space Y with a σ-wHCP weak base $\mathcal{B} = \cup_{n \in \mathbb{N}} \mathcal{B}_n$ does not contain a copy of S_ω. Suppose not. There is a non-trivial sequence $\{y_n\}$ converging to a point $y \in Y$ that is not an isolated point and Y is not g-first countable at y. There is $n \in \mathbb{N}$ and infinitely many weak neighborhoods of y in \mathcal{B}_n, each containing a tail of $\{x_n\}$. Since \mathcal{B}_n is wHCP, there is a subsequence L of $\{x_n\}$ such that L is discrete. This is a contradiction.

5 S_ω is a space obtained from the topological sum of ω many convergent sequences by identifying all limit points to a single point.

6 $S_2 = (\mathbb{N} \times \mathbb{N}) \cup \mathbb{N} \cup \{\infty\}$ is the space with each point of $\mathbb{N} \times \mathbb{N}$ isolated. A basic neighborhood of $n \in \mathbb{N}$ consists of all sets of the form $\{n\} \cup \{(m, n): m \geq k\}$. And U is a neighborhood of ∞ if and only if $\infty \in U$ and U is a neighborhood of all but finitely many $n \in \mathbb{N}$.
Since no perfect image of X contains a copy S_ω, then X contains no copy of S_2. X is a sequential space and every point is a G_δ-set; hence, X is a Fréchet-Urysohn space [15]. Since every Fréchet-Urysohn, g-metrizable space is metrizable [14], then X is metrizable. □

Lin [9] introduced sn-networks to generalize weak bases (it is easy to see that a weak base is an sn-network). An sn-network is a weak base if the topological space is a sequential space. Many results on g-metrizable spaces can be generalized in terms of sn-networks [5]. Dai and the author [11] proved the following.

Theorem 2.15. Let X be a k-space with a σ-HCP k-network, then X is g-metrizable if X contains no copy of S_ω.

In a personal communication with the author, Lin asked if we can generalize the above theorem as follows:

Question 2.16. Let X have a σ-HCP k-network. Does X have a σ-locally finite sn-network if it contains no copy of S_ω?

We give a negative answer to the question.

Example 2.17. There is an \aleph_0-space that contains no copy of S_ω, but it is not sn-first countable.

Proof: Let $X = \{\infty\} \cup \{x_i(n) : i \in \mathbb{N}, n \in \mathbb{N}\}$, and let $\{f_\alpha : \alpha < 2^{\omega}\}$ be all maps from \mathbb{N} to \mathbb{N}. Endow X with topology as follows: each $\{x_i(n)\}$ is open for $i \in \mathbb{N}, n \in \mathbb{N}$; the neighborhood of ∞ is $X \setminus \cup \{x_{f(n)}(n) : f \in F \in \{f_\alpha : \alpha < 2^{\omega}\}^{<\omega}\}$. It is easy to see that $x_i(n) \to \infty$ for each $n \in \mathbb{N}$ and any convergent sequence in X is contained in the finite union of $\{\{x_i(n)\} : n \in \mathbb{N}\}$.

(1) X has a countable k-network. $\{\{x_i(n)\} : i \in \mathbb{N}, n \in \mathbb{N}\} \cup \{\{x_i(n) : i > m\} \cup \{\infty\} : m \in \mathbb{N}, n \in \mathbb{N}\}$ is a countable cs*-network

for X. Since X is countable, then each point of X is a G_δ-set; hence, X has a countable k-network by Proposition B(1) in [17].

(2) X contains no copy of S_ω. Let $g : \mathbb{N} \to \mathbb{N}$ be a surjection. It is obvious that $\{x_i(n) : i \leq g(n), n \in \mathbb{N}\}$ is not closed in X; therefore, X contains no copy of S_ω.

7A cover P is a cs*-network of X if whenever σ is a sequence converging to a point x and $x \in U$ with U open, then for some $P \in P$, $x \in P \subset U$, and P contains a subsequence of σ.
(3) X is not sn-first countable. Suppose not. Let $\{P_n : n \in \mathbb{N}\}$ be a decreasing countable sn-network at ∞. For each $n \in \mathbb{N}$, $x_i(n) \to \infty$, pick $x_i(n) \in P_n$, then $x_i(n) \to \infty$. This is a contradiction because $X \setminus \{x_i(n)\}$ is an open neighborhood of ∞. □

Acknowledgment. The author would like to thank the referee for many valuable comments.

References

Department of Mathematics; Ohio University-Zanesville; Zanesville, Ohio 43701

E-mail address: liucl@ohio.edu