AN m-DIMENSIONAL
HEREDITARILY INDECOMPOSABLE CONTINUUM
WITH EXACTLY n CONTINUOUS MAPPINGS
ONTO ITSELF

ELŻBIETA POL

Abstract. We show that for every $n \in \mathbb{N}$ and $m \in \mathbb{N} \cup \{\infty\}$, there exists a hereditarily indecomposable m-dimensional continuum X which has exactly n continuous surjections onto itself (each one being a homeomorphism).

Moreover, we construct a family of cardinality 2^{\aleph_0} of continua of this type such that no two different continua from this family are comparable either by continuous mappings or by embeddings.

1. Introduction

Our terminology follows [5] and [8]. We assume that all our spaces are separable metrizable. By dimension, we mean the covering dimension \dim and by a continuum, we mean a compact connected space. A continuum X is hereditarily indecomposable, abbreviated HI, if for any two intersecting subcontinua K, L of X, either $K \subset L$ or $L \subset K$.

The first HI continuum, now called the pseudo-arc, was constructed by Bronislaw Knaster [7]. The pseudo-arc, which will be denoted by P, is an HI one-dimensional chainable continuum.

2000 Mathematics Subject Classification. Primary 54F15, 54F45.

Key words and phrases. continuous surjections, Cook’s continua, dimension, hereditarily indecomposable continua, pseudo-arc, Waraszkiewicz spirals.

The author was supported in part by MNiSW Grant Nr. N201 034 31/2717. ©2007 Topology Proceedings.
(unique, up to a homeomorphism), and every non-trivial subcontinent of \(P \) is homeomorphic to \(P \). (For more information and references concerning the pseudo-arc see [12].)

The first examples of HI continua of dimension \(m \), where \(m = 2, 3, \ldots, \infty \), were constructed by R. H. Bing [3].

We say that two continua are comparable by continuous mappings (by embeddings, respectively) if there exists a continuous mapping (an embedding, respectively) of one of those continua onto (into, respectively) the other. By a Cook continuum, we understand a non-trivial continuum \(X \) such that no two different nondegenerate subcontinua of \(X \) are comparable by continuous mappings. The first example of a hereditarily indecomposable Cook continuum was constructed in [4]. In the same paper, H. Cook constructed for every \(n \in \mathbb{N} = \{1, 2, \ldots\} \), a continuum \(H_n \) which has exactly \(n \) continuous mappings onto itself, each one being a homeomorphism. The continuum \(H_n \) is decomposable and admits an atomic mapping onto a simple closed curve. Applying the ideas from [17], [19], and [10], we will prove the following theorem.

Theorem 1.1. For each \(n \in \mathbb{N} \) and \(m \in \mathbb{N} \cup \{\infty\} \), there exists a hereditarily indecomposable continuum \(X_{nm} \) of dimension \(m \) which has exactly \(n \) continuous mappings onto itself, each one being a homeomorphism. Moreover, \(X_{nm} \) admits an atomic mapping onto the pseudo-arc \(P \) and the group of autohomeomorphisms of \(X_{nm} \) onto \(X_{nm} \) is the cyclic group of order \(n \).

In the special cases when \(m = 1 \) or \(n = 1 \), these results were obtained in [19]. Any 1-dimensional HI Cook continuum satisfies the condition of Theorem 1.1 for \(m = n = 1 \).

Moreover, we will prove the following theorem.

Theorem 1.2. For every \(n \in \mathbb{N} \) and \(m \in \mathbb{N} \cup \{\infty\} \), there exists a family \(\{X_{nm}(s) : s \in S\} \), where \(S \) is a set of cardinality \(2^{\aleph_0} \) of topologically different HI \(m \)-dimensional continua such that every \(X_{nm}(s) \) has exactly \(n \) continuous surjections onto itself and admits an atomic mapping \(p_s \) onto the pseudo-arc \(P \). Moreover,

(i) if \(s \neq t \), then there is no continuous mapping of \(X_{nm}(s) \) onto \(X_{nm}(t) \);

(ii) if \(s \neq t \), then \(X_{nm}(s) \) does not embed into \(X_{nm}(t) \).
Our construction is a modification of the ones given in [17] and [19] and applies a method of condensation of singularities. As before, we exploit an HI Cook continuum and we use a theorem of Wayne Lewis stating that for each \(n \in \mathbb{N} \) there exists an embedding of the pseudo-arc \(P \) in the plane such that the restriction \(r \) of a period \(n \) rotation of the plane around \((0,0)\) to \(P \) is a homeomorphism of \(P \) onto \(P \) of period \(n \) [11]. To raise the dimension of the space obtained in [19], we construct our space in such a way that it contains a certain \(m \)-dimensional continuum \(Y_1 \). The new idea in the proof lies in Lemma 2.2 below. Roughly speaking, this lemma states that one can “replace” one point of a given continuum \(X \) by a special continuum in such a way that the resulting space can be mapped onto any given Waraszkiewicz spiral. In this way, we can “improve” a given continuum \(X \) so that a given continuum \(Y_1 \) does not map onto the whole \(X \).

2. Preliminaries

A continuum \(Y \) is a common model for a family of continua \(W \), if every member of \(W \) is a continuous image of \(Y \) (we do not assume that \(Y \in W \)).

By the ray, we will understand a space homeomorphic to the half-line \([0, +\infty)\). In [22], Z. Waraszkiewicz constructed a family \(W \) of planar continua without a common model. By a Waraszkiewicz spiral, we mean a member of this family. Every Waraszkiewicz spiral \(W \) is a compactification of the ray \(L \) with the remainder \(S \) homeomorphic to the circle. We have

(1) for every continuum \(A \) there exists a Waraszkiewicz spiral \(W \) such that \(A \) cannot be mapped onto \(W \).

The composant of a point \(x \) in a continuum \(X \) is the union of all proper subcontinua of \(X \) containing \(x \). If \(X \) is a non-degenerate HI continuum, then \(X \) has \(2^{\aleph_0} \) different composants, which are pairwise disjoint and are connected \(F_\sigma \)-subsets of \(X \), both dense and a boundary set in \(X \) (see [8, §48, VI]).

A mapping \(f : X \rightarrow Y \) between continua is confluent (weakly confluent, respectively), if for each subcontinuum \(Q \) of \(Y \) each (some, respectively) component of \(f^{-1}(Q) \) is mapped by \(f \) onto \(Q \). As proved by Cook in [4], each mapping of a continuum onto an HI continuum is confluent.
A subcontinuum K of a continuum X is terminal if every subcontinuum of X which intersects both K and its complement must contain K. A continuous mapping from a continuum X onto Y is atomic if every fiber of f is a terminal subcontinuum of X.

Lemma 2.1 ([1], cf. [14] and [20]). Let X and Y be two continua and $a \in X$. Then there exists a continuum $M(X,Y,a)$ and an atomic mapping $p : M(X,Y,a) \to X$ onto X such that $p^{-1}(a)$ is homeomorphic to Y and $p | p^{-1}(X \setminus \{a\}) : p^{-1}(X \setminus \{a\}) \to X \setminus \{a\}$ is a homeomorphism.

Every continuum $M(X,Y,a)$ with the properties described in this lemma will be called a pseudosuspension of Y over X at the point a (cf. [14, 1.13]) and the mapping p will be called a natural projection from $M(X,Y,a)$ onto X.

Since $p^{-1}(a)$ is a terminal continuum in $M(X,Y,a)$, then (see [13, Proposition 11])

(2) if X and Y are HI, then so is $M(X,Y,a)$.

By the countable sum theorem (see [5], Theorem 1.5.3), we get

(3) $\dim M(X,Y,a) = \max\{\dim X, \dim Y\}$.

The following lemma, which was suggested by the referee of [16] (see Remark 5.2), was proved in detail in [10, Lemma 5.1].

Lemma 2.2. Let X be any continuum, let a be any point of X, and let $W = L \cup S$ be a Waraszkiewicz spiral, being a compactification of the ray L with the remainder S homeomorphic to the circle. Let Y be a continuum satisfying the following condition:

(4) There exists a mapping $f : Y \to W$ of Y onto W and a sequence $M_1 \subset M_2 \subset \ldots$ of subcontinua of Y contained in $f^{-1}(L)$ such that the union $\bigcup_{i=1}^{\infty} M_i$ is dense in Y.

Then there exists a pseudosuspension $M(X,Y,a)$ which admits a mapping $\tilde{f} : M(X,Y,a) \to W$ onto W.

Lemma 2.3. For every Waraszkiewicz spiral W there exists an HI continuum Y of dimension ≤ 2 which satisfies condition (4) of Lemma 2.2. Moreover, Y can be chosen as a subcontinuum of any given HI continuum Z with $2 \leq \dim Z < \infty$.

Proof: Let Z be any given HI continuum of finite dimension ≥ 2 and W be a Waraszkiewicz spiral. Let $Z' \subset Z$ be a 2-dimensional
subcontinuum of Z. By a theorem of Mazurkiewicz [15], there exists a weakly confluent mapping of Z' onto the square I^2. Since $W \subset I^2$, there exists a subcontinuum $X \subset Z'$ which is mapped by f onto W. By Lemma 5.2 of [10], X contains a subcontinuum Y, which satisfies (4). □

Lemma 2.4 ([4]). There exists a one-dimensional HI continuum H such that for any two different non-degenerate subcontinua of H, there is no mapping from one onto the other.

Lemma 2.5 (see [4] and [21], cf. [19], Lemma 2.2). If $f : P \to H$ is a continuous mapping of the pseudo-arc into a Cook continuum H, then f is a constant mapping.

Lemma 2.6 (see Lemma 5.1 of [9] and its proof). For any proper subcontinuum M of a 1-dimensional HI Cook continuum H and for every $m = 1, 2, \ldots, \infty$, there exists an m-dimensional HI continuum M_m such that every map from a subcontinuum of M into M_m is constant.

3. **Proofs**

Proof of Theorem 1.1: For every $n \in \mathbb{N}$, a 1-dimensional continuum X_n with the required properties was constructed in [17] and [19]. We shall modify this construction in order to raise the dimension of such a space. Fix $n \in \mathbb{N}$ and $m \in \{2, 3, \ldots, \infty\}$. Inductively, let us define a sequence Y_1, Y_2, \ldots of HI continua and a sequence W_1, W_2, \ldots of Waraszkiewicz spirals such that

1. $\dim Y_1 = m$ and $\dim Y_l \leq 2$ for $l = 2, 3, \ldots$;
2. condition (4) is satisfied for $Y = Y_l$ and $W = W_{l-1}$, for every $l = 1, 2, \ldots$;
3. Y_l cannot be mapped onto W_l for $l = 1, 2, \ldots$.

Let Y_1 be any HI m-dimensional continuum. By (1), there exists a Waraszkiewicz spiral W_1 such that Y_1 cannot be mapped onto W_1. Suppose now that $Y_1, Y_2, \ldots, Y_{l-1}$ and $W_1, W_2, \ldots, W_{l-1}$ are already defined for some $l \geq 2$. For Y_l, we take a continuum Y of dimension ≤ 2 from Lemma 2.3, where we put $W = W_{l-1}$. Thus, Y_l can be mapped onto W_{l-1} and satisfies (4) for $W = W_{l-1}$. Again by condition (1), there exists a Waraszkiewicz spiral W_l such that Y_l does not map onto W_l.
By a theorem of Lewis [11], there exists a pseudo-arc P in the Euclidean plane and a homeomorphism $r : P \to P$ of period n, which is the restriction of the rotation of the plane about the point $(0,0)$ through the angle $\frac{2\pi}{n}$. Note that $(0,0) \in P$, since the pseudo-arc P has the fixed point property (see [6]). Let $P_0 = \{(x_1, x_2) \in P : x_1 = \lambda \cos \alpha$ and $x_2 = \lambda \sin \alpha$ for some $0 < \lambda < \infty$ and $0 < \alpha < 2\pi\}$, and $P_k = r^k(P_0)$ for $k = 0, 1, \ldots, n - 1$. Let $\{b_1, b_2, \ldots\}$ be a countable dense subset of P_0 such that b_i and b_j are in the same composant of P if and only if $i = j$.

There exists a composant C in P which does not contain any b_i. In $C \cap P_0$, we choose a point c_0, a sequence Q_i of continua containing c_0 and converging to $\{c_0\}$, and a sequence c_1, c_2, \ldots of points such that $c_i \in Q_i$ and $c_i \neq c_j$ for $i \neq j$.

Now, let $\{a_1, a_2, \ldots\}$ be a sequence such that $a_{2l-1} = c_l$ and $a_{2l} = b_l$ for $l = 1, 2, \ldots$. Put $B_0 = \bigcup\{b_l\}_{l=1}^{\infty}$, $C_0 = \bigcup\{c_l\}_{l=1}^{\infty}$, and $A_0 = B_0 \cup C_0$.

Then

(8) the set $B_0 \setminus F$, where F is any finite subset of B_0, is dense in P_0.

Let $B = \bigcup_{k=0}^{n-1} r^k(B_0)$, $C = \bigcup_{k=0}^{n-1} r^k(C_0)$, and $A = B \cup C$. Since a homeomorphic image of a composant of P is a composant of P, then

(9) every composant of P contains at most n points from B, and

(10) C intersects at most n composants of P.

Finally, let K_1, K_2, \ldots be a sequence of disjoint non-degenerate subcontinua of the hereditarily indecomposable Cook continuum H from Lemma 2.4. Thus,

(11) for every $j \neq i$, every continuous mapping from a subcontinuum of K_j into K_i is constant.

Let us define an inverse sequence $\{L_i, p^i_j, \{0\} \cup \mathbb{N}\}$ in the following way. Put $L_0 = P$. Let $L_1 = M(P, Y_1, a_1)$ be a pseudosuspension of an m-dimensional HI continuum Y_1 over P at $a_1 = c_1$ and let p^1_0 be the natural projection. Suppose that L_i and p^i_j are already defined for $j \leq i \leq s$, where $s \in \mathbb{N}$. If $s = 2l$ for $l \geq 1$, then let $L_s = L_{2l} = M(L_{s-1}, K_1, (p^s_0)^{-1}(a_s))$ be a pseudosuspension of a
Cook continuum K_l over L_{2l-1} at $(p_0^{s-1})^{-1}(a_s) = (p_0^{s-1})^{-1}(b_l)$. If $s = 2l - 1$ for some $l \geq 2$, then $a_s = c_l$, and by (6), the conditions of Lemma 2.2 are satisfied for $W = W_{l-1}$ and $Y = Y_l$, so there exists a pseudosuspension $L_s = L_{2l-1} = M(L_{s-1}, Y_l, (p_0^{s-1})^{-1}(a_s))$ of Y_l over $L_{s-1} at (p_0^{s-1})^{-1}(a_s)$ which admits a mapping onto W_{l-1}.

Now, let p_s^{s-1} be the natural projection and $p_j^s = p_{j+1}^s \circ \ldots \circ p_{s-1}^s$ for $j < s$. Let L be an inverse limit of this inverse sequence and let $p_s : L \rightarrow L_s$ be the projection. In particular, let $p = p_0$ be the projection of the limit space onto $L_0 = P$.

Let us note that for every $s \in \mathbb{N}$, L_s is the union of an open subset homeomorphic to $P \setminus \bigcup_{i=0}^s \{a_i\}$, of a copy of the m-dimensional continuum Y_1, and of finitely many copies of at most 2-dimensional continua from the family $\{K_1, Y_2, K_2, Y_3, \ldots\}$. Thus, by the countable sum theorem, $\dim L_s = m$ for every $s \in \mathbb{N}$. By the theorem on the dimension of the limit of an inverse sequence (see [5, Theorem 1.13.4]) and since L contains a topological copy of Y_1, it follows that

(12) the dimension of the limit space L is equal to m.

Since L_{2l-1} can be mapped onto W_{l-1} for $l \geq 2$, and L projects onto L_{2l-1}, then

(13) L can be mapped onto every W_l, for $l = 1, 2, \ldots$.

Since the projection $p_j^s : L_i \rightarrow L_j$ is a composition of finitely many atomic mappings, then it is atomic (see [13, (1.4)]). Hence, p is atomic (see [2, Theorem II]).

Let us note also that by (8) and from the definition of topology of the inverse limit,

(14) for every finite subset F of B_0, every open subset of $p^{-1}(P_0)$ contains some set $p^{-1}(b)$, where $b \in B_0 \setminus F$.

We can assume additionally that $L \subset P \times \mathbb{I}^\infty$, where $\mathbb{I} = [0, 1]$, and that p is the restriction of the projection of $P \times \mathbb{I}^\infty$ onto P. Moreover, we can assume that $p^{-1}(y) = (y, (0, 0, \ldots))$ for every $y \in P \setminus P_0$.

Indeed, assume that $L \subset \mathbb{I}^\infty$ and for $x, y \in \mathbb{R}^2$ let $\rho(x, y) = \min(\rho_s(x, y), 1)$, where ρ_s is the Euclidean metric in the plane. If $f(x) = (p(x), \rho(p(x), \mathbb{R}^2 \setminus P_0), x)$ for $x \in L$, then f is continuous and one-to-one; hence, it is a homeomorphism of L onto $f(L) \subset P \times \mathbb{I}^\infty$.
Thus, we can replace L by $f(L)$ and p by the restriction of the projection of $P \times \mathbb{I}^\infty$ onto P.

From the construction, it follows that for $l \in \mathbb{N}$, $p^{-1}(a_{2l-1})$ is homeomorphic to the continuum Y_l, $p^{-1}(a_{2l})$ is homeomorphic to the Cook continuum K_l, and $p \mid p^{-1}(P \setminus A_0) : p^{-1}(P \setminus A_0) \to (P \setminus A_0)$ is a homeomorphism.

Let $\overline{\mathbf{r}}(y, t) = (r(y), t)$ for $(y, t) \in P \times \mathbb{I}^\infty$. Let \overline{P}_0 be the closure of P_0 in P. For $k = 0, 1, \ldots, n - 1$, let $\overline{P}_k = \mathbf{r}^k(p^{-1}(\overline{P}_0))$ and $X_{nm} = \bigcup_{k=0}^{n-1} \overline{P}_k$.

Note that X_{nm} admits a continuous mapping g onto L, being the identity on \overline{P}_0, such that $g \mid \bigcup_{k=1}^{n-1} \overline{P}_k$ is the restriction of the projection of $P \times \mathbb{I}^\infty$ onto P. Thus, by (13),

(15) X_{nm} can be mapped onto W_l for every $l = 1, 2, \ldots$.

Let $\overline{p} : X_{nm} \to P$ be the restriction of the projection of $P \times \mathbb{I}^\infty$ onto the first axis. The mapping $\overline{r} = \mathbf{r} \mid X_{nm}$ is a period n homeomorphism of X_{nm} onto X_{nm}, such that

(16) $\overline{p} \circ r^k = r^k \circ \overline{p}$ for every $k = 0, 1, \ldots, n - 1,$

and

(17) $p(x) = \overline{p}(x)$ for $x \in \overline{P}_0$.

As in [17], we check that \overline{p} is atomic (cf. [17, Lemma 2.7]).

Note that

(18) $\overline{p} \mid \overline{p}^{-1}(P \setminus A) : \overline{p}^{-1}(P \setminus A) \to P \setminus A$ is a homeomorphism.

Moreover, for $k \in \{0, 1, \ldots, n - 1\}$, we have that

(19) if $x = r^k(a_1) = r^k(c_1)$, then $\overline{p}^{-1}(x)$ is a copy of the m-dimensional HI continuum Y_1;

(20) if $x = r^k(a_{2l-1}) = r^k(c_l)$ for some $l \geq 2$, then the set $Y_l^k = \overline{p}^{-1}(x)$ is a copy of the HI continuum Y_l with $\dim Y_l \leq 2$;

and

(21) if $x = r^k(a_{2l}) = r^k(b_l)$ for some $l \geq 1$, then $K_l^k = \overline{p}^{-1}(x)$ is a copy of the HI Cook continuum K_l.

From (14), it follows that

(22) if F is a finite subset of B, and $x(b) \in \overline{p}^{-1}(b)$ for $b \in B \setminus F$, then the set $\{x(b) : b \in B \setminus F\}$ is dense in X_{nm}.
Since \(X_{nm} \) is the union of \(n \) closed subspaces which embed into \(L \), then, by (12) and (19), \(\dim X_{nm} = m \).

The space \(X_{nm} \) is HI, since it is the preimage of an HI continuum \(P \) under the atomic mapping \(\tilde{p} \) with HI fibers.

Since \(\tilde{p} \) is an atomic mapping, every composant of \(X_{nm} \) is equal to \(\tilde{p}^{-1}(L) \) for some composant \(L \) of \(P \) (see [20, Lemma 2.8]). By (9),

(23) every composant of \(X_{nm} \) contains at most \(n \) copies of continua from the family \(\mathcal{K} = \{ K_i^l : l \in \mathbb{N}, k = 0, 1, \ldots, n - 1 \} = \{ \tilde{p}^{-1}(b) : b \in B \} \).

Let \(f : X_{nm} \to X_{nm} \) be an arbitrary continuous mapping of \(X_{nm} \) onto \(X_{nm} \). We will show that \(f = \tilde{r}^k \) for some \(k \in \{ 0, 1, \ldots, n - 1 \} \).

For every \(k \) and \(l \), \(Y_l^k \) cannot be mapped onto \(W_l \), while \(X_{nm} \) admits a mapping onto \(W_l \) by (15), so \(f(Y_l^k) \neq X_{nm} \). Thus,

(24) for every \(k \in \{ 0, 1, \ldots, n - 1 \} \) and \(l \in \mathbb{N} \), \(f(Y_l^k) \) is contained in one of the composants of \(X_{nm} \).

Recall that \(Q_i \) is a sequence of continua in \(P \) containing \(c_i \), with diameters tending to 0. In every \(L \), the sequence of continua \(\{ (p_{0}^n)^{-1}(Q_i) \}_{i=1}^{\infty} \) converges to the point \((p_{0}^n)^{-1}(c_0) \), so in the inverse limit space \(L \), the sequence of continua \(\{ p^{-1}(Q_i) \}_{i=1}^{\infty} \) converges to the point \(p^{-1}(c_0) \).

It follows that for every \(k \in \{ 0, 1, \ldots, n - 1 \} \), the sequence of continua \(\{ \tilde{p}^{-1}(r^k(Q_i)) \}_{i=1}^{\infty} \) converges to the one-point set \(\{ \tilde{p}^{-1}(r^k(c_0)) \} \), so the sequence of continua \(\{ f(\tilde{p}^{-1}(r^k(Q_i))) \}_{i=1}^{\infty} \) converges to the one-point set \(\{ f(\tilde{p}^{-1}(r^k(c_0))) \} \). Thus, for a fixed \(k \), almost all continua \(f(\tilde{p}^{-1}(r^k(Q_i))) \), where \(i \in \mathbb{N} \), are contained in the same composant of \(X_{nm} \) and thus, almost all continua \(f(Y_l^k) \), where \(l \in \mathbb{N} \), are contained in the same composant of \(X_{nm} \). From this and (24), it follows that the union of all sets \(f(Y_l^k) \), for \(k = 0, 1, \ldots, n - 1 \) and \(l = 0, 1, \ldots \), is contained in finitely many composants of \(X_{nm} \).

Thus, by (23), only finitely many continua from the family \(\{ K_i^l : l \in \mathbb{N}, k = 0, 1, \ldots, n - 1 \} \) can intersect the image under \(f \) of the union \(\bigcup \{ Y_l^k : l \in \mathbb{N}, k = 0, 1, \ldots, n - 1 \} \) of a composant \(C \). It follows that

(25) there exists \(l_0 \) such that for \(l \geq l_0 \) and every \(k \), \(K_i^l \cap f(\tilde{p}^{-1}(C)) = \emptyset \).

Let \(B' = \{ r^k(b_l) : l \geq l_0, k = 0, 1, \ldots, n - 1 \} \). We will show that
for every \(b \in B' \), there is a nontrivial subcontinuum \(Q \) of \(\tilde{p}^{-1}(b) \) and \(t \in \{1, 2, \ldots, n-1\} \) such that \(f(\tilde{t}^t(x)) = x \) for every \(x \in Q \).

Fix \(b \in B' \). Then \(\tilde{p}^{-1}(b) \) is equal to the Cook continuum \(K^k_i \) for some \(l \geq l_0 \) and \(k \in \{1, 2, \ldots, n-1\} \). Since \(X_{nm} \) is III, then \(f \) is confluent and thus, there exists a proper subcontinuum \(T \) of \(X_{nm} \) such that \(f(T) = K^k_i \). Then \(T \) is disjoint with \(\tilde{p}^{-1}(C) \) by (25) and is contained in some composant of \(X_{nm} \). From this and (23), it follows that either \(T \) is contained in \(\tilde{p}^{-1}(b') \) for some \(b' \in B \), or \(T \) is the union of a non-empty subset of \(\tilde{p}^{-1}(P \setminus A) \) and of finitely many continua \(\tilde{p}^{-1}(b(1)), \ldots, \tilde{p}^{-1}(b(r)) \), where \(b(i) \in B \). In the second case, there exists \(i \) such that \(f(\tilde{p}^{-1}(b(i))) \) is a nondegenerate subcontinuum of \(\tilde{p}^{-1}(b) \). For otherwise, the set \(K^k_i \setminus \bigcup_{j=1}^{r} f(\tilde{p}^{-1}(b(i))) \) would contain a non-degenerate subcontinuum, which is the image of a subcontinuum \(T' \subset \tilde{p}^{-1}(P \setminus A) \cap T \). However, by (18), each non-degenerate subcontinuum \(T' \) of \(X_{nm} \) contained in \(\tilde{p}^{-1}(P \setminus A) \) is homeomorphic to \(P \); therefore, by Lemma 2.5, \(T' \) admits only constant mappings into the Cook continuum \(K^k_i \), which gives a contradiction.

Therefore, in both cases, there exists \(b' \in B \) such that \(f(T \cap \tilde{p}^{-1}(b')) \) is a nondegenerate subcontinuum of \(K^k_i \). By (11), \(\tilde{p}^{-1}(b') \) must be equal to \(K^k_i \) for some \(t \), and, for \(Q = T \cap \tilde{p}^{-1}(b) \), condition (26) is satisfied, because \(Q \) and \(f(Q) \) must be topological copies of the same nondegenerate subcontinuum of the Cook continuum \(K^k_i \). By choosing a point \(x(b) \in \tilde{p}^{-1}(b) \cap K \), we get the result that

(27) for every \(b \in B' \), there is a point \(x(b) \in \tilde{p}^{-1}(b) \) such that \(f(\tilde{t}^t(x(b))) = x(b) \) for some \(t \in \{1, 2, \ldots, n-1\} \).

By (22), the set \(Y = \{x(b) : b \in B'\} \) is dense in \(X_{nm} \).

The remaining part of the proof repeats the arguments from the proof of Theorem 3.1 in [19]. First, let us note that

(28) for every \(x \in X_{nm} \), there is \(t \in \{0, 1, \ldots, n-1\} \) such that \(f(\tilde{t}^t(x)) = x \).

Indeed, one can find a sequence \(\{x(b_j)\}_{j=1}^\infty \), where \(b_j \in B' \), converging to \(x \), such that for some \(t \in \{0, 1, \ldots, n-1\} \), \(f(\tilde{t}^t(x(b_j))) = x(b_j) \) for every \(j \). Thus, \(f(\tilde{t}^t(x(b_j))) \rightarrow f(\tilde{t}^t(x)) \), so \(f(\tilde{t}^t(x)) = x \).

For every \(x \neq \tilde{p}^{-1}((0,0)) \), the set \(Y(x) = \bigcup_{k=1}^{n} x^k(x) \) has \(n \) elements and every point of \(Y(x) \) is the image of a point in \(Y(x) \);
hence, \(f(Y(x)) = Y(x) \) and \(f \mid Y(x) \to Y(x) \) is one-to-one. In particular, for every \(x \neq \tilde{p}^{-1}((0,0)) \), there exists \(k \in \{0,1,\ldots,n-1\} \) such that \(f(x) = \tilde{r}^k(x) \).

For \(k \in \{0,1,\ldots,n-1\} \), let \(X(k) = \{ x \in X_{nm} : f(x) = \tilde{r}^k(x) \} \).

It is easy to see that every \(X(k) \) is closed in \(X_{nm} \) and \(X(k) \cap X(l) = \{ \tilde{p}^{-1}((0,0)) \} \) for \(k \neq l, k,l \in \{0,1,\ldots,n-1\} \). It follows that every \(X(k) \) is a continuum. Indeed, if \(X(k) \) were the union of two disjoint closed subsets \(F_1 \) and \(F_2 \) with \(\tilde{p}^{-1}((0,0)) \in F_2 \), then \(X_{nm} \) would be the union of two sets \(F_1 \) and \(F_2 \cup \bigcup_{l \neq k} X(l) \), disjoint and closed in \(X_{nm} \). Since \(X_{nm} \) is hereditarily indecomposable, then \(X_{nm} = X(k) \) for some \(k \in \{0,1,\ldots,n-1\} \), and thus, \(f = \tilde{r}^k \) and \(f \) is a homeomorphism.

This ends the proof that the set of all continuous mappings from \(X_{nm} \) onto \(X_{nm} \) is equal to the set \(\{ \tilde{r}^0, \tilde{r}^1, \ldots, \tilde{r}^{n-1} \} \) and forms the cyclic group of order \(n \).

\[\square \]

Proof of Theorem 1.2: Let \(S \) be a set of cardinality \(2^{\aleph_0} \), \(H \) be the 1-dimensional HI Cook continuum (see Lemma 2.4), and \(K \) be a proper non-degenerate subcontinuum of \(H \). For every \(s \in S \), let us choose a sequence \(\{K_1(s), K_2(s), \ldots\} \) of non-degenerate subcontinua of \(K \) in such a way that \(K_i(s) \cap K_j(t) = \emptyset \) if \(s \neq t \) or \(i \neq j \). Such a family \(\{K_i(s) : i \in \mathbb{N}, s \in S\} \) exists, because \(K \) has \(2^{\aleph_0} \) composants which are pairwise disjoint. Thus,

\[(29) \text{ every mapping from a subcontinuum of } K_i(s) \text{ into } K_j(t) \text{ is constant.} \]

If, in the proof of Theorem 1.1, we replace in the construction of \(X_{nm} \), the sequence \(K_1, K_2, \ldots \) by the sequence \(\{K_1(s), K_2(s), \ldots\} \), then we obtain an HI continuum \(X_{nm}(s) \) with exactly \(n \) continuous surjections onto itself, which admits an atomic mapping \(\tilde{p}_s : X_{nm}(s) \to P \) onto \(P \). As we will prove below, the family \(\{X_{nm}(s) : s \in S\} \) satisfies condition (i) of Theorem 1.2. In order to obtain such a family also satisfying condition (ii), we assume additionally that \(Y_1 \) is a space \(M_m \) constructed in Lemma 2.6 for \(M = K \), and \(Y_l \) for \(l \geq 2 \) is a space \(Y \) of dimension \(\leq 2 \) constructed in Lemma 2.3 for \(W = W_{l-1} \), which is contained in the 2-dimensional continuum \(M_2 \) from Lemma 2.6 (where we put \(M = K \)).

Thus,
(30) every mapping from a subcontinuum of \(K \) into \(Y_t \), for \(l = 1, 2, \ldots \), is constant.

Let us show condition (i). From the construction, it follows that \(X_{nm}(s) \) is the union of the set \(\tilde{p}_s^{-1}(P \setminus A) \) homeomorphic to a subset of \(P \), of continua from the family \(K(s) = \{ \tilde{p}_s^{-1}(b) : b \in B \} \), and of continua from the family \(\mathcal{Y} = \{ \tilde{p}_s^{-1}(c) : c \in C \} \). Note that the family \(K(s) \) contains exactly \(n \) copies of every continuum \(K_i(s) \), for every \(i \in \mathbb{N} \), and the family \(\mathcal{Y} \) contains \(n \) copies of every continuum \(Y_l \), for \(l \in \mathbb{N} \).

Let \(f : X_{nm}(s) \rightarrow X_{nm}(t) \) be an arbitrary continuous surjection. Suppose that \(t \neq s \). Similar to the proof of Theorem 1.1, one shows that the set \(f(\bigcup \mathcal{Y}) \) intersects only finitely many components of \(X_{nm}(t) \), so it intersects only finitely many continua from the family \(K(t) \). Hence, there exists \(\tilde{p}_t^{-1}(b) \in K(t) \), being a copy of some \(K_i(t) \), which is disjoint with \(f(\bigcup \mathcal{Y}) \). Since \(f \) is confluent, there exists a nontrivial subcontinuum \(T \) of \(X_{nm}(s) \), disjoint with \(\bigcup \mathcal{Y} = \tilde{p}_s^{-1}(C) \), such that \(f(T) = \tilde{p}_t^{-1}(b) \). Since \(T \) is a proper subcontinuum of \(X_{nm}(s) \), it is contained in some component of \(X_{nm}(s) \). It follows that either \(T \) is contained in some \(\tilde{p}_s^{-1}(b') \) for some \(b' \in B \), or \(T \) is the union of a non-empty subset of \(\tilde{p}_s^{-1}(P \setminus A) \) and of finitely many continua \(\tilde{p}_s^{-1}(b(1)), \ldots, \tilde{p}_s^{-1}(b(r)) \), where \(b(i) \in B \). In the second case, there exists \(i \) such that \(f(\tilde{p}_s^{-1}(b(i))) \) is a nondegenerate subcontinuum of \(\tilde{p}_t^{-1}(b) \). For otherwise, the set \(\tilde{p}_s^{-1}(b) \setminus \bigcup_{i=1}^{r} f(\tilde{p}_s^{-1}(b(i))) \) would contain a non-degenerate subcontinuum, which is the image of a subcontinuum \(T' \subset \tilde{p}_s^{-1}(P \setminus A) \cap T \). However, each non-degenerate subcontinuum of \(X_{nm}(s) \) contained in \(\tilde{p}_s^{-1}(P \setminus A) \) is homeomorphic to \(P \); therefore, by Lemma 2.5, it admits only constant mappings into the Cook continuum \(\tilde{p}_t^{-1}(b) \), which gives a contradiction.

Therefore, in both cases, there exists \(b' \in B \) such that \(f(T \cap \tilde{p}_s^{-1}(b')) \) is a nondegenerate subcontinuum of \(\tilde{p}_t^{-1}(b) \). But \(\tilde{p}_s^{-1}(b') \) and \(\tilde{p}_t^{-1}(b) \) are homeomorphic to two disjoint subcontinua of the Cook continuum \(H \), which yields a contradiction. Thus, \(s = t \).

To prove (ii), suppose that \(s \neq t \), and \(h : X_{nm}(s) \rightarrow X_{nm}(t) \) is an embedding. Let \(K_1(s)' \) be a copy of \(K_1(s) \) in \(X_{nm}(s) \). Then \(h(K_1(s)') \) is a copy of \(K_1(s) \) in \(X_{nm}(t) \), so it does not embed in \(\tilde{p}_t^{-1}(P \setminus A) \) by Lemma 2.5. Thus, \(h(K_1(s)') \) intersects some \(\tilde{p}_t^{-1}(a_i) \). By (29) and (30), \(h(K_1(s)') \) is not contained in \(\tilde{p}_t^{-1}(a_i) \) for any
\[i = 1, 2, \ldots \]; hence, \(\tilde{p}_t^{-1}(a_i) \subset h(K_1(s')) \) for some \(i \). However, if \(i = 2l \), then \(\tilde{p}_t^{-1}(a_i) \) is a copy of \(K_l(t) \), which gives a contradiction by (29). If \(i = 2l - 1 \), then \(\tilde{p}_t^{-1}(a_i) \) is a copy of a continuum \(Y_l \). Since \(h : K_1(s) \to h(K_1(s')) \) is a homeomorphism, then \(Z = h^{-1}(\tilde{p}_t^{-1}(a_i)) \) is a subcontinuum of \(K_1(s') \) such that \(h(Z) = \tilde{p}_t^{-1}(a_i) \), which contradicts (30). This shows that \(s = t \). \(\Box \)

References

Institute of Mathematics; University of Warsaw; Banacha 2; 02-197 Warszawa, Poland

E-mail address: pol@mimuw.edu.pl