ON LEXICOGRAPHIC PRODUCTS OF TWO GO-SPACES WITH A GENERALIZED ORDERED TOPOLOGY

AI-JUN XU AND WEI-XUE SHI

ABSTRACT. In this paper, we investigate lexicographic products of two GO-spaces with a generalized ordered topology that we call a generalized ordered topological product of the two GO-spaces. We concentrate on the relationship of the properties, such as Lindelöfness, paracompactness, and perfectness, of the two GO-spaces and their generalized ordered topological product.

1. Introduction

Starting with two generalized ordered (GO) spaces X and Y, we introduced, in [7], a new topology on the lexicographic product set $X \times Y$. This new topology contains the usual open-interval topology of the lexicographic order and also reflects in a natural way the fact that X and Y carry a GO-topology, rather than just the open interval topology of their linear orderings. (Precise definitions appear in section 2.) This new topology on the lexicographic product is called a generalized ordered topological product (GOTP) of the GO-spaces X and Y and is denoted by GOTP$(X \times Y)$. In this paper, for GO-spaces X and Y, we show that the GOTP$(X \times Y)$ is

2000 Mathematics Subject Classification. 54F05, 54D20, 54B10, 54D15.

Key words and phrases. generalized ordered spaces, generalized ordered topological product, lexicographic order, Lindelöf, paracompact.

This work is supported by NSFC, project 10571081.

Lindelöf (or paracompact) if and only if X, Y are Lindelöf (or paracompact), provided that Y has two endpoints. We prove that the GOTP($X * Y$) is a paracompact GO-space if and only if X, Y are paracompact GO-spaces, provided that X does not have neighbor points. Moreover, we investigate when the GOTP is metrizable, (or perfectly normal, or a p-space, or an M-space).

Let $X = (X, \tau, \leq)$ be a GO-space. If p and q are points of X such that $p < q$ and $(p, q) = \emptyset$, then p and q are called neighbor points in X; p is the left neighbor point of q and q is the right neighbor point of p. Let

$$I_X = \{x \in X \mid x \text{ is an isolated point of } X\},$$

$$R_X = \{x \in X \mid [x, \rightarrow) \in \tau\},$$

$$L_X = \{x \in X \mid (\leftarrow, x] \in \tau\},$$

$$E_X = R_X \cup L_X,$$

$$N_X = \{x \in E_X - I_X \mid \exists y \in E_X - I_X \text{ such that } x, y \text{ are neighbor points in } X\}.$$

For example, suppose $X = (-1, 0] \cup \{1, 2\} \cup [3, 4)$ with the usual subspace topology from the real line. Then $\{0, 1, 2, 3\} \subset E_X$, but none of these points belongs to N_X. If C is a convex subset of X and $\xi = (A, B)$ is a (pseudo-)gap in X, then we say that C covers ξ if $C \cap A \neq \emptyset \neq C \cap B$. A subset A of X is said to be left discrete in X if for each $x \in X$, there exists a convex open neighborhood $O(x)$ such that $O(x) \cap (A - \{x\}) \cap (\leftarrow, x] = \emptyset$. A subset A of X is said to be σ-l-discrete if $A = \bigcup\{A_n \mid n \in \mathbb{N}\}$ where for each $n \in \mathbb{N}$, A_n is left discrete in X and \mathbb{N} denotes the positive integers. σ-r-discrete is similarly defined. Define an equivalence relation \sim on X by

$$x \sim y \iff x = y \text{ or } x, y \in N_X \& \text{ } x, y \text{ are neighbor points in } X.$$

For a set V and a collection \mathcal{U} of sets, we will write $V \prec \mathcal{U}$ to mean that V is a subset of some member of \mathcal{U}.

For undefined terminology refer to [3], [4], [5], [6].

2. Lindelöfness and the GOTP

In contrast to lexicographic products of two LOTS with the usual interval topology, we give a generalized ordered topology on lexicographic products of two GO-spaces.
Definition 2.1 ([4]). Let \((X, <_X), (Y, <_Y)\) be linearly ordered sets. Then the lexicographic product \(X \ast Y\) is defined as the Cartesian product \(X \times Y\) supplied with the lexicographic ordering \(<;\); i.e., if \(a = \langle x_1, y_1 \rangle\) and \(b = \langle x_2, y_2 \rangle\) \(\in X \times Y\) then
\[a < b \text{ if and only if } x_1 <_X x_2 \text{ or } x_1 = x_2 \text{ and } y_1 <_Y y_2. \]

Definition 2.2 ([7]). Let \((X, \tau_X, <_X), (Y, \tau_Y, <_Y)\) be GO-spaces. Let \(\lambda_X\) and \(\lambda_Y\) be the usual interval topology on \(X\) and \(Y\), respectively, and let \(\lambda_{X \ast Y}\) be the usual interval topology on the linearly ordered set \(X \ast Y\).

The generalized ordered topology (GOT) \(\tau_{X \ast Y}\) is generated by a subbase \(\lambda_{X \ast Y} \cup \tau_R \cup \tau_L \cup \{\langle x, y \rangle, \rightarrow\} \subseteq X \ast Y \mid x \in X, y \in Y\) and \([y, \rightarrow) \in \tau_Y - \lambda_Y\} \cup \{(\leftarrow, \langle x, y \rangle) \subseteq X \ast Y \mid x \in X, y \in Y\) and \((\leftarrow, y) \in \tau_Y - \lambda_Y\}, where either
\[\tau_R = \emptyset \text{ and } \tau_L = \emptyset, \text{ if } Y \text{ does not have endpoints}, \]
or
\[\tau_R = \{(\langle x, y_0 \rangle, \rightarrow) \mid x \in X \text{ and } [x, \rightarrow) \in \tau_X - \lambda_X\} \text{ and } \tau_L = \emptyset, \text{ if } Y \text{ has a left endpoint } y_0, \text{ but no right one}, \]
or
\[\tau_R = \emptyset \text{ and } \tau_L = \{(\leftarrow, \langle x, y_1 \rangle) \mid x \in X \text{ and } (\leftarrow, x) \in \tau_X - \lambda_X\}, \text{ if } Y \text{ has a right endpoint } y_1, \text{ but no left one}, \]
or
\[\tau_R = \{(\langle x, y_0 \rangle, \rightarrow) \mid x \in X \text{ and } [x, \rightarrow) \in \tau_X - \lambda_X\} \text{ and } \tau_L = \{(\leftarrow, \langle x, y_1 \rangle) \mid x \in X \text{ and } (\leftarrow, x) \in \tau_X - \lambda_X\}, \text{ if } Y \text{ has both a left endpoint } y_0 \text{ and a right endpoint } y_1. \]

We say that the space \((X \ast Y, \tau_{X \ast Y})\) is the generalized ordered topological product (GOTP) of GO-spaces \((X, \tau_X, <_X)\) and \((Y, \tau_Y, <_Y)\), and denote it by \(\text{GOTP}(X \ast Y)\). Similarly, we denote \((X \ast Y, \lambda_{X \ast Y})\) by \(\text{LOTP}(X \ast Y)\).

In Definition 2.2, if \(X, Y\) are LOTS, then \(\tau_{X \ast Y} = \lambda_{X \ast Y}\). For each \(x \in X\), the subspace \(\{x\} \ast Y\) of the \((\text{GOTP}(X \ast Y))\) is homeomorphic to \(Y\). Moreover, the topology on the \(\text{GOTP}(X \ast Y)\) is determined by the topologies on \(X\) and \(Y\). So the \(\text{GOTP}(X \ast Y)\) is a natural generalization of the lexicographic product with the usual interval topology.
Convention. When the meanings are clear from the context, we do not distinguish notations for orderings on different ordered sets and use simply \(<\) instead of \(<_X\), \(<_Y\), and \(\preceq\).

Definition 2.3. Let \(X\) be a GO-space and \(S \subseteq X\) be convex in \(X\). Define
\[
I(S) = \{x \in S \mid \text{there exist } a, b \in S \text{ with } a < x < b\}.
\]

For any subset \(G \subseteq X\), define
\[
I(G) = \bigcup \{I(S) \mid S \text{ is a convex component of } G\}.
\]

For any subset \(G\) of GO-space \(X\), \(I(G)\) is open in \(X\). Next, we explore when the lexicographic product of two GO-spaces with a generalized ordered topology is Lindelöf. First, we need the following lemmas.

Lemma 2.1 ([7]). Let \(X, Y\) be GO-spaces and \(y_0, y_1\) be a left (right) point of \(Y\). Suppose \(\mathcal{U}\) is an open cover of the \(\text{GOTP}(X \ast Y)\) by convex sets and
\[
E = \{x \in X \mid \text{no element of } \mathcal{U} \text{ contains both } (u, y_0) \text{ and } (v, y_1) \text{ for some } u, v \in X \text{ and } u < x < v\}.
\]
Then \(E\) is a closed discrete subspace of \(X\).

Lemma 2.2 ([7]). Let \(X, Y\) be GO-spaces. Suppose \(\pi_1\) is a mapping from the \(\text{GOTP}(X \ast Y)\) onto \(X\), which is defined by \(\pi_1((x, y)) = x\) for each point \((x, y) \in X \ast Y\). If \(Y\) has both a left and a right endpoint, then \(\pi_1\) is continuous.

Remark. In this paper, \(\pi_1\) always denotes the map defined in Lemma 2.2.

Theorem 2.1. Let \(X, Y\) be GO-spaces. If \(Y\) has both a left and a right endpoint, then the following are equivalent.

1. \(X, Y\) are Lindelöf;
2. the \(\text{GOTP}(X \ast Y)\) is Lindelöf.

Proof: (1) \(\Longrightarrow\) (2) Let \(y_0\) be a left endpoint of \(Y\) and \(y_1\) be a right endpoint of \(Y\). Suppose \(\mathcal{U}\) is any open cover of the \(\text{GOTP}(X \ast Y)\). Without loss of generality, suppose every member of \(\mathcal{U}\) is convex.
Let E be defined as in Lemma 2.1. Since X is Lindelöf, E is countable by Lemma 2.1. Let

$$I(\pi_1(\mathcal{U})) = \{I(\pi_1(U)) \mid U \in \mathcal{U}\}$$

and

$$\mathcal{U}(I_X) = \{\{x\} \mid x \in E \cap I_X\}.$$

For each $x \in E \cap (R_X - I_X)$, choose $u_x, v_x \in X$ and $U_x \in \mathcal{U}$ satisfying the following properties:

1. if $x \in E \cap (R_X - I_X)$, then $v_x > x$ and $[\langle x, y_1 \rangle, \langle v_x, y_1 \rangle] \subseteq U_x \in \mathcal{U}$;
2. if $x \in E \cap (L_X - I_X)$, then $u_x < x$ and $[\langle u_x, y_0 \rangle, \langle x, y_0 \rangle] \subseteq U_x \in \mathcal{U}$.

For each $x \in E - (R_X \cup L_X \cup I_X)$, choose $u_x, v_x \in X$ and $U_{x0}, U_{x1} \in \mathcal{U}$ satisfying the following property:

$$u_x < x < v_x, \ [\langle u_x, y_0 \rangle, \langle x, y_0 \rangle] \subseteq U_{x0} \in \mathcal{U} \text{ and } [\langle x, y_1 \rangle, \langle v_x, y_1 \rangle] \subseteq U_{x1} \in \mathcal{U}.$$

Then let

$$\mathcal{U}(R_X) = \{[x, v_x] \mid x \in E \cap (R_X - I_X)\},$$

$$\mathcal{U}(L_X) = \{[u_x, x] \mid x \in E \cap (L_X - I_X)\},$$

$$\mathcal{U}(T_X) = \{(u_x, v_x) \mid x \in E - (R_X \cup L_X \cup I_X)\}.$$

We claim that $\mathcal{U}' = I(\pi_1(\mathcal{U})) \cup \mathcal{U}(I_X) \cup \mathcal{U}(R_X) \cup \mathcal{U}(L_X) \cup \mathcal{U}(T_X)$ is an open cover of X. Obviously, every member of \mathcal{U}' is open in X. It remains to show that $I(\pi_1(\mathcal{U})) \supseteq X - E$ since $\mathcal{U}(I_X) \cup \mathcal{U}(R_X) \cup \mathcal{U}(L_X) \cup \mathcal{U}(T_X) \supseteq E$. For every $x \in X$, if $x \notin E$, then there exist $u, v \in X$ with the property $u < x < v$ and $\langle x, y_0 \rangle, \langle v, y_1 \rangle \in \mathcal{U} \supseteq U \in \mathcal{U}$. Thus, $x \in (u, v) \in I(\pi_1(\mathcal{U})) \in I(\pi_1(\mathcal{U})).$

Suppose that \mathcal{V} is a countable subcover of \mathcal{U}'. Define

$$\mathcal{W}_1 = \{U \in \mathcal{U} \mid I(\pi_1(U)) \in \mathcal{V}\},$$

$$\mathcal{W}_2 = \{U_x \mid x \in E \cap (R_X - I_X) \text{ and } [x, v_x] \in \mathcal{V}\},$$

$$\mathcal{W}_3 = \{U_x \mid x \in E \cap (L_X - I_X) \text{ and } [u_x, x] \in \mathcal{V}\},$$

$$\mathcal{W}_4 = \{U_{x0}, U_{x1} \mid x \in E - (R_X \cup L_X \cup I_X) \text{ and } (u_x, v_x) \in \mathcal{V}\}.$$

Since Y is Lindelöf and homeomorphic to $\{x\} * Y$, there is a countable open subfamily \mathcal{V}_x of \mathcal{U} covers $\{x\} * Y$ for every $x \in X$. Then let

$$\mathcal{W}_5 = \cup \{\mathcal{V}_x \mid x \in E\}. $$
Hence, for \(i = 1, 2, 3, 4, 5 \), \(W_i \) is a countable open collection of the \(\text{GOTP}(X \ast Y) \). Define \(W = \bigcup \{ W_i \mid i = 1, 2, 3, 4, 5 \} \). By the above construction, \(W \) is a subset of \(U \). To conclude the proof, it suffices to show that \(W \) is an open cover of the \(\text{GOTP}(X \ast Y) \). Let \(s = (z, y) \in X \ast Y \). There are two cases:

(i) If \(z \in E \), then \(s = (z, y) \) is covered by \(W_5 \).

(ii) If \(z \notin E \), then there exists \(V \in V \) with \(z \in V \). Furthermore, \(V \) must be a member of \(I(\pi_1(U)) \cup U(R_X) \cup U(L_X) \cup U(T_X) \).

If \(V \in I(\pi_1(U)) \), then there exists \(U \in U \) such that \(V = I(\pi_1(U)) \). Hence, \(s \in U \in W_1 \). If \(V \in U(T_X) \), then there exists \(x \in E - (R_X \cup L_X \cup I_X) \) with \(V = ([x, y], y_x) \) and \(x \neq z \). Thus, \(s = (z, y) \) belongs to \(([u_x, y_0], [x, y_0]) \) or \(([x, y_1], [v_x, y_1]) \). Hence, \(s = (z, y) \) belongs to \(U_{x_0} \) or \(U_{x_1} \), either of which belongs to \(W_4 \). The other cases are similar.

\((2) \Longrightarrow (1) \) Clearly, \(Y \) is Lindelöf because \(\{ x \} \ast Y \) is a closed set of the \(\text{GOTP}(X \ast Y) \) and homeomorphic to \(Y \) for every \(x \) of \(X \). Next, we will prove that \(X \) is Lindelöf. For any open cover \(V \) of \(X \) by convex sets, \(\pi^{-1}(V) = \{ \pi^{-1}(V) \mid V \in V \} \) is an open cover of the \(\text{GOTP}(X \ast Y) \) by Lemma 2.2. So, there is a countable open subcover \(\pi^{-1}(V') \) of \(\pi^{-1}(V) \) with \(V' \subseteq V \). Then, \(V' \) is a countable open subcover of \(V \). In fact, for each \(x \in X \), there exists \(V \in V' \) such that \((x, y_0) \in \pi^{-1}(V) \). Hence, \(x \in V \).

In Theorem 2.1, if \(Y \) has only one endpoint, then the \(\text{GOTP}(X \ast Y) \) may not be Lindelöf.

Example 2.1. Let \(Y = [0, 1) \) with the usual topology and let \(X \) denote \([0, 1]\) having a base consisting of all intervals \((z, 1]\), \([x, y)\), where \(x, y, z \in [0, 1] ; x < y \); and \(x \neq 1 \). Then the \(\text{GOTP}(X \ast Y) \) is not Lindelöf.

In addition, we have the following theorem.

Theorem 2.2. Let \(X, Y \) be GO-spaces. If \(Y \) has neither a left nor a right endpoint, then the \(\text{GOTP}(X \ast Y) \) is Lindelöf if and only if \(Y \) is Lindelöf and \(|X| < \omega_1 \).

Proof: Obvious, since \(X \ast Y \) is the disjoint union of the open subset of the \(\text{GOTP}(X \ast Y) \).
3. Paracompactness and the GOTP

Lemma 3.1 ([4]). Let X be a GO-space. Then X is hereditarily paracompact iff $X - \{x\}$ is paracompact for each point $x \in X$.

Lemma 3.2. Let X, Y be GO-spaces. If Y has both a left and a right endpoint, and

1. if A is discrete in X and B is discrete in Y, then $A \ast B$ is discrete in the GOTP($X \ast Y$);
2. if D is discrete in the GOTP $X \ast Y$, then $\pi_1(D)$ is discrete in X.

Proof: Let y_0 denote the left endpoint of Y and y_1 denote the right endpoint of Y.

1. For every $x \in X$ and $y \in Y$, there exist convex open subsets $O(x, A)$ (in X) and $U(y, B)$ (in Y) such that $O(x, A) \cap (A - \{x\}) = \emptyset$ and $U(y, B) \cap (B - \{y\}) = \emptyset$, respectively. It suffices to show that there exist open subsets $V((x, y))$ of the GOTP($X \ast Y$) such that $V((x, y)) \cap (A \ast B - \{(x, y)\}) = \emptyset$ for each $(x, y) \in X \ast Y$. If $y \neq y_0, y_1$, then let $V((x, y)) = \{x\} \ast (U(y, B) - \{y_0, y_1\})$. If $y = y_0$, then let $V((x, y)) = \{x\} \ast U(y_0, B) \cup (\pi_1^{-1}(O(x, A)) \cap \langle (x, y_0), - \rangle)$. If $y = y_1$, then let $V((x, y)) = \{x\} \ast U(y_1, B) \cup (\pi_1^{-1}(O(x, A)) \cap \langle (x, y_1), - \rangle).

2. For every $(x, y) \in X \ast Y$, there exists a convex open neighborhood $O((x, y))$ of (x, y) in the GOTP $X \ast Y$ such that $O((x, y)) \cap (D - \{(x, y)\}) = \emptyset$. We shall prove that there exists an open neighborhood $U(x)$ of x in X such that $U(x) \cap (\pi_1(D) - \{x\}) = \emptyset$. There are four cases to consider: (i) $x \in I_X$ is clear. (ii) $x \in X - (R_X \cup L_X \cup I_X)$. Then there exists $u_x, v_x \in X$, $O((x, y_0))$ and $O((x, y_1))$ with $u_x < x < v_x$, $(u_x, y_1) \in O((x, y_1))$ and $(u_x, y_0) \in O((x, y_0))$. Then, let $U(x) = (u_x, v_x)$. (iii) $x \in R_X - I_X$. For $(x, y_1) \in X \ast Y$, there exists $v_x > x$ with $(v_x, y_1) \in O((x, y_1))$. Then let $U(x) = [x, v_x)$. (iv) $x \in L_X - I_X$. Similarly, there exists $u_x < x$ with $(u_x, y_1) \in O((x, y_0))$, then let $U(x) = (u_x, x]$.

Corollary 3.1. Let X, Y be GO-spaces. If Y has both a left and a right endpoint, then the following are equivalent.

1. The GOTP($X \ast Y$) is σ-discrete;
2. X, Y are σ-discrete.
Proof: (1) \(\iff\) (2) Let the GOTP\((X \ast Y)\) be \(\sigma\)-discrete. Obviously, \(Y\) is \(\sigma\)-discrete. Moreover, let

\[
X \ast Y = \bigcup\{D_n \mid n \in \mathbb{N} \text{ and } D_n \text{ is discrete in the GOTP}(X \ast Y) \text{ for each } n \in \mathbb{N}\}.
\]

Then, \(X = \pi_1(X \ast Y) = \bigcup\{\pi_1(D_n) \mid n \in \mathbb{N}\}\) is \(\sigma\)-discrete in \(X\) by Lemma 3.2(2).

(2) \(\implies\) (1) Since \(X, Y\) are \(\sigma\)-discrete, we have

\[
X = \bigcup\{A_n \mid n \in \mathbb{N} \text{ and } A_n \text{ is discrete in } X\} \quad \text{and} \quad Y = \bigcup\{B_m \mid m \in \mathbb{N} \text{ and } B_m \text{ is discrete in } Y\}.
\]

For each \(n, m \in \mathbb{N}\), let \(C_{n,m} = \bigcup\{x \ast B_m \mid x \in A_n\}\). Then \(X \ast Y = \bigcup\{C_{n,m} \mid n, m \in \mathbb{N}\}\). By Lemma 3.2(1), \(C_{n,m}\) is discrete in the GOTP\((X \ast Y)\). Thus, the GOTP\((X \ast Y)\) is \(\sigma\)-discrete. \(\Box\)

Lemma 3.3 ([4], Theorem 2.4.6). Let \(X\) be a GO-space. Then \(X\) is paracompact if and only if for each gap and each pseudo-gap \((A, B)\) in \(X\), there exist discrete subsets \(C \subset A\) and \(D \subset B\) which are cofinal in \(A\) and coinitial in \(B\), respectively.

Theorem 3.1. If \(X, Y\) are (hereditarily) paracompact GO-spaces, then the GOTP\((X \ast Y)\) is a (hereditarily) paracompact GO-space.

Proof: Let \(X, Y\) be paracompact. Suppose \((A, B)\) is a left-pseudo-gap in the GOTP\((X \ast Y)\). (The other cases can be proved similarly.) Then, the singleton set \(\{b_{0X}, b_{0Y}\}\) of the left endpoint of \(B\) is a discrete subset of the GOTP\((X \ast Y)\) which is coinitial in \(B\). So, it suffices to prove that there exists a cofinal subset \(D\) of \(A\) which is discrete in the GOTP\((X \ast Y)\). Let

\[
A_X = \{a_X \in X \mid \text{there exists } a_Y \in Y \text{ such that } a = \langle a_X, a_Y \rangle \in A\},
\]

\[
B_X = \{b_X \in X \mid \text{there exists } b_Y \in Y \text{ such that } b = \langle b_X, b_Y \rangle \in B\}.
\]

Then \(X = A_X \cup B_X\), \(a_X \leq b_X\) for all \(a_X \in A_X\), and \(b_X \in B_X\). Further, \(|A_X \cap B_X| \leq 1\) and \(B_X\) has a left endpoint \(b_{0X}\).

Case 1. \(A_X \cap B_X = \emptyset\). Since \((A, B)\) is a left-pseudo-gap, \(Y\) has a left endpoint \(y_0 = b_{0Y}\). First we claim that \((A_X, B_X)\) must be a left-pseudo-gap in \(X\). In fact, if \((A_X, B_X)\) were not a left-pseudo-gap in \(X\), then it would be a jump. So \(b_{0X}\) has an immediate predecessor \(b_{0X}^-\) in \(X\) that is the maximal point of \(A_X\). Then \(Y\)
does not have a right endpoint since \((A, B)\) is a left-pseudo-gap of the \(\text{GOTP}(X * Y)\). But by the definition of \(\text{GOTP}\), \(\langle b_0X, b_0Y, \rightarrow \rangle\) is not open in the \(\text{GOTP}(X * Y)\). This contradicts that \((A, B)\) is a left-pseudo-gap of the \(\text{GOTP}(X * Y)\).

Now we know that \((A_X, B_X)\) is a left-pseudo-gap in \(X\). Then there exists \(D_X \subseteq A_X\) such that \(D_X\) is a discrete subset of \(X\) and cofinal in \(A_X\). Pick arbitrary \(y \in Y\). Let \(D = \{\langle x, y \rangle \mid x \in D_X\}\). Obviously, \(D\) is a cofinal subset of \(A\). By Lemma 3.2, \(D\) is discrete in the \(\text{GOTP}(X * Y)\).

\textbf{Case 2.} \(A_X \cap B_X \neq \emptyset\). Then \(A_X \cap B_X = \{b_0X\}\). Let

\[A_Y = \{a_Y \in Y \mid \langle b_X, a_Y \rangle \in A\}\]

and

\[B_Y = \{b_Y \in Y \mid \langle b_X, b_Y \rangle \in B\}\]

Then \((A_Y, B_Y)\) is a left-pseudo-gap in \(Y\) since \(\{b_X\} * Y\) is homeomorphic to \(Y\). Hence, there exists a subset \(D_Y \subseteq A_Y\) which is discrete in \(Y\) and cofinal in \(A_Y\). Now, define \(D = \{\langle b_0X, y \rangle \mid y \in D_Y\}\). Then \(D\) is a discrete subset of the \(\text{GOTP}(X * Y)\) and a cofinal subset of \(A\).

Next, let \(X, Y\) be hereditarily paracompact. By Lemma 3.1, it suffices to prove that there are discrete subsets \(D\) and \(R\) of \(X * Y - \{p\}\), such that \(D\) is cofinal in \(\{s \in X * Y \mid s < p\}\) and \(R\) is cofinal in \(\{s \in X * Y \mid p < s\}\) for every \(p \in X * Y\). Let \(p = \langle p_X, p_Y \rangle \in X * Y\). If \(p_Y\) is not an endpoint of \(Y\), then the proof is clear since \(Y\) is hereditarily paracompact. Let \(p_Y\) be the left endpoint of \(Y\). Then there are two possibilities to consider:

(i) \(p_X\) has an immediate predecessor \(p_X^-\) in \(X\). If \(Y\) has the right endpoint \(y_1\), then let \(D = \{\langle p_X^-, y_1 \rangle\}\). If \(Y\) does not have a right endpoint, then there exists \(D_Y \subseteq Y\) such that \(D_Y\) is discrete and cofinal in \(Y\). Thus, let \(D = \{\langle p_X^-, y \rangle \mid y \in D_Y\}\).

(ii) \(p_X\) does not have an immediate predecessor in \(X\). Then there exists \(D_X \subseteq X - \{p_X\}\) such that \(D_X\) is discrete in \(X - \{p_X\}\) and cofinal in \(\{x \mid x < p_X\}\). Thus, let \(D = \{\langle x, p_Y \rangle \mid x \in D_X\}\).

In either case, \(D\) is discrete in \(X * Y - \{p\}\) and cofinal in \(\{s \in X * Y \mid s < p\}\). Further, there exists \(R_Y \subseteq Y\) such that \(R_Y\) is discrete and coinitial in \(Y - \{p_Y\}\). Hence, let \(R = \{\langle p_X, y \rangle \mid y \in R_Y\}\). Then \(R\)
is discrete in $X \ast Y - \{p\}$ and cofinal in $\{s \in X \ast Y \mid s > p\}$. If p_Y is the right endpoint of Y, the proof is similar. \qed

The converse of the above theorem is not true. (See Example 3.1.)

Example 3.1. Let $X = \omega_0$ and $Y = \omega_1$ with the usual order topology. Then Y is not paracompact. However, the GOTP($X \ast Y$) is paracompact. (In fact, the GOTP($X \ast Y$) is Lindelöf.)

Theorem 3.2. Let X, Y be GO-spaces. If Y has neither a left nor a right endpoint, then the GOTP($X \ast Y$) is paracompact if and only if Y is paracompact.

The proof of Theorem 3.2 is obvious because the GOTP($X \ast Y$) is the disjoint union of open subsets of $X \ast Y$, each homeomorphic to Y. Moreover, when “paracompact” is replaced by σ-discrete, or perfectly normal, or p-space, or M-space, or metrizable, the conclusion of Theorem 3.2 is also true.

Theorem 3.3. Let X, Y be GO-spaces. If Y has both a left and a right endpoint, then the following are equivalent.

1. The GOTP($X \ast Y$) is paracompact;
2. X, Y are paracompact.

Proof: (2) \implies (1) is clear by Theorem 3.1.

(1) \implies (2) Obviously, Y is paracompact since it is homeomorphic to the closed $\{x\} \ast Y$ of the GOTP($X \ast Y$) for every $x \in X$. Next, we prove that X is paracompact. Let (A, B) be a left-pseudo-gap in X. (The other cases are proved similarly.) Then $(\pi_1^{-1}(A), \pi_1^{-1}(B))$ is a left-pseudo-gap in the GOTP($X \ast Y$). Hence, there exists a discrete subset D of the GOTP($X \ast Y$) such that D is a cofinal subset of $\pi_1^{-1}(A)$. Thus, $\pi_1(D)$ is a cofinal subset of A and a discrete subset of X by Lemma 3.2(2). \qed

Theorem 3.4. Let X, Y be GO-spaces. If X does not have neighbor points, then the following are equivalent.

1. the GOTP($X \ast Y$) is paracompact;
2. X, Y are paracompact.

Proof: (2) \implies (1) is clear by Theorem 3.1.

(1) \implies (2) Since X does not have neighbor points, $\{x\} \ast Y$ is a closed subset of the GOTP($X \ast Y$) for every $x \in X$. Then Y
is paracompact because \(Y\) is homeomorphic to \(\{x\} \ast Y\) for every \(x \in X\). Next, we prove that \(X\) is paracompact. Let \((A, B)\) be a left-pseudo-gap in \(X\). (The other cases proved similarly.) There are two cases.

Case 1. If \(Y\) has a left endpoint, then \((\pi^{-1}_1(A), \pi^{-1}_1(B))\) is a left-pseudo-gap in the GOTP\((X \ast Y)\).

Case 2. If \(Y\) does not have a left endpoint, then \((\pi^{-1}_1(A), \pi^{-1}_1(B))\) is a gap in the GOTP\((X \ast Y)\).

In either case, there is a discrete subset \(D\) in the GOTP\((X \ast Y)\) which is cofinal in \(\pi^{-1}_1(A)\). Thus, \(\pi_1(D)\) must be cofinal in \(A\). Further, \(\pi_1(D)\) is a discrete subset of \(X\) by Lemma 3.2 (2). The proof is finished.

In Theorem 3.4, the condition “\(X\) does not have neighbor points” cannot be removed. Otherwise, \(Y\) may not be paracompact (see Example 3.1).

Lemma 3.4 ([4]). Let \(X\) be a GO-space. Then the following are equivalent.

1. \(X\) is metrizable;
2. there exists a subset \(D \subseteq X\) such that
 - (i) \(\overline{D} = X\);
 - (ii) \(E_X \subseteq D\);
 - (iii) \(D\) is \(\sigma\)-discrete (in \(X\)).

Theorem 3.5. Let \(X, Y\) be GO-spaces. If \(Y\) has both a left and a right endpoint, then the following are equivalent.

1. The GOTP\((X \ast Y)\) is metrizable;
2. \(X\) is \(\sigma\)-discrete and \(Y\) is metrizable.

By Lemma 3.2 and Lemma 3.4, the proof of Theorem 3.5 is easy.

4. Other results on the GOTP

Theorem 4.1. Let \(X, Y\) be GO-spaces.

1. If \(|Y| > 2\) and \(Y\) has both a left and a right endpoint, then the GOTP\((X \ast Y)\) is perfectly normal \(\iff\) \(X\) is \(\sigma\)-discrete and \(Y\) is perfectly normal.
2. If \(|Y| = 2\), then the GOTP\((X \ast Y)\) is perfectly normal \(\iff\) \(X\) is perfectly normal and \(E_X\) is \(\sigma\)-discrete in \(X\).

Proof: (1) Necessity. Clearly, \(Y\) is perfectly normal. Since \(|Y| > 2\), there exists \(y \in Y\) such that \(y\) is not an endpoint of \(Y\). Then
\{ (x, y) \mid x \in X \} is a relatively discrete subset in the \text{GOTP}(X \ast Y). Hence, \{ (x, y) \mid x \in X \} is a \(\sigma \)-discrete subset in the \text{GOTP}(X \ast Y) by Theorem 2.4.5 in [4]. Therefore, \(X \) is \(\sigma \)-discrete by the Lemma 3.2(2).

Sufficiency. Let \(P \) be a relatively discrete subset in the \text{GOTP}(X \ast Y). Let \(P_x = \{ (x) \ast Y \} \cap P \). Then \(P_x \) is a relatively discrete subset in \(\{ (x) \ast Y \} \) for each \(x \in X \). Since \(\{ x \} \ast Y \) is homeomorphic to \(Y \), \(P_x \) is \(\sigma \)-discrete in \(Y \) for each \(x \in X \). In addition, \(P \subseteq \{ \{ x \} \ast P_x \mid x \in \pi_1(P) \} \). Thus, \(P \) is \(\sigma \)-discrete in the \text{GOTP}(X \ast Y) by Lemma 3.2(1). By Theorem 2.4.5 in [4], the \text{GOTP}(X \ast Y) is perfectly normal.

(2) Necessity. Suppose \(Y = \{ y_0, y_1 \} \) with \(y_0 < y_1 \). Let \(P \) be relatively discrete in \(X \). Then \(\pi_1^{-1}(P) \) is relatively discrete in the \text{GOTP}(X \ast Y). Hence, \(\pi_1^{-1}(P) \) is \(\sigma \)-discrete in the \text{GOTP}(X \ast Y).

By Lemma 3.2(2), \(P \) is \(\sigma \)-discrete in \(X \). Then \(X \) is perfectly normal.

For each \(x \in L_X \), \((x, y_1)\) is an isolated point in \text{GOTP}(X \ast Y) since \(\langle \langle x, y_1 \rangle \rangle \) is open and \(\langle x, y_1 \rangle \) has an immediate predecessor \(\langle x, y_0 \rangle \). Similarly, for each \(x \in R_X \), \((x, y_0)\) is isolated. Thus, \(A = \{ (x, y_1) \mid x \in L_X \} \cup \{ (x, y_0) \mid x \in R_X \} \) is a relatively discrete subset of \text{GOTP}(X \ast Y). By perfectness of \text{GOTP}(X \ast Y), \(A \) is \(\sigma \)-discrete.

Again by Lemma 3.2, \(E_X = \pi_1(A) \) is \(\sigma \)-discrete in \(X \).

Sufficiency. Let \(F = (X \ast Y) / \sim \) be the quotient space of \text{GOTP}(X, Y) (See section 1 for the definition of the equivalence relation \(\sim \)). Then \(F \) is a GO-space with respect to the ordering inherited from \(X \ast Y \). Observe that

\[
N_{\text{GOTP}(X \ast Y)} = \{ (x, y_0), (x, y_1) \mid x \in X - (L_X \cup R_X) \}
\]

and

\[
F = \{ (x, y_0), (x, y_1) \mid x \in X - (L_X \cup R_X) \}
\]

\[
\cup \{ (x, y) \mid (x, y) \in (X \ast Y) - N_{\text{GOTP}(X \ast Y)} \}.
\]

Define \(g : X \to F \) as follows

\[
g(x) = \begin{cases}
\{ (x, y_0), (x, y_1) \} & \text{if } x \in X - (L_X \cup R_X) \\
\{ (x, y_0) \} & \text{if } x \in L_X \\
\{ (x, y_1) \} & \text{if } x \in R_X - I_X.
\end{cases}
\]

Then \(g \) is an embedding map from \(X \) to \(F \). We regard \(x \) and \(g(x) \) as the same thing. Suppose \(I = F - X \). Then \(I \) is a set consisting of
isolated points of the GOTP$(X \ast Y)$. Hence, any family consisting of disjoint convex (in F) subsets of I is σ-discrete in the GOTP$(X \ast Y)$ and also in F. Hence, F may be regarded as the union of X and I, and I is an open σ-discrete subset of F. Suppose \mathcal{O} is a family of disjoint open convex subsets of F. Then $\mathcal{O}|X = \{O \cap X | O \in \mathcal{O}\}$ is a family of disjoint open convex subsets of X. It follows that $\mathcal{O}|X$ is σ-discrete in X since X is perfectly normal. So we may put $\mathcal{O} = \cup\{\mathcal{O}_n | n \in \mathbb{N}\}$ such that $\mathcal{O}_n|X$ is discrete in X. Moreover, $\{O \in \mathcal{O}_n | O \cap X \neq \emptyset\}$ is discrete in F as well since each member of \mathcal{O}_n is convex. Therefore, $\{O \in \mathcal{O} | O \cap X \neq \emptyset\}$ is σ-discrete in F. Next, if $O \in \mathcal{O}$ does not meet X, then $O \subset I$. So $\{O \in \mathcal{O} | O \cap X = \emptyset\}$ is σ-discrete in F. Hence, $(X \ast Y)/\sim$ is perfectly normal. Thus, the GOTP$(X \ast Y)$ is perfectly normal by [4, Lemma 3 (p. 26)]. □

Let X be a GO-space and suppose $\xi = (A, B)$ is a (pseudo-)gap, possibly an endgap. Then ξ is said to be countable from the left if some strictly increasing countably infinite sequence is cofinal in A, and ξ is said to be countable from the right if there is a strictly decreasing countably infinite sequence coinitial in B. The (pseudo-)gap ξ is said to be countable if it is countable from the left or from the right.

Lemma 4.1 ([6]). (1) Let X be a GO-space. Then X is a p-space if and only if there exists a sequence $(V(n))_{n \in \mathbb{N}}$ of convex open covers of X with the property that for each $x \in X$ and each (pseudo-)gap $\xi = (A, B)$ in X there exists an $n = n(x, \xi) \in \mathbb{N}$ such that $St(x, V(n))$ does not cover the (pseudo-)gap ξ.

(2) Let X be a GO-space. Therefore, X is an M-space if and only if there exists a sequence $(V(n))_{n \in \mathbb{N}}$ of convex open covers of X with the property that for each $x \in X$ and each countable (pseudo-)gap $\xi = (A, B)$ in X, there exists an $n = n(x, \xi) \in \mathbb{N}$ such that $St(x, V(n))$ does not cover the (pseudo-)gap ξ.

The following theorem can be proved in a way analogous to the proof of Theorem 3.1.2 in [6]. But we give here a different (direct) proof.

Theorem 4.2. Let X and Y be GO-spaces. If Y has both a left and a right endpoint and no (interior) gaps, then the following are equivalent.

(1) X is a p-space;
(2) the GOTP($X \ast Y$) is a p-space.

Proof: Let y_0 denote a left endpoint of Y and y_1 denote a right endpoint of Y.

(1) \implies (2) Suppose (A, B) is a (pseudo-)gap of the GOTP($X \ast Y$). Then $(\pi_1(A), \pi_1(B))$ is a (pseudo-)gap of X since Y is a compact LOTS. Let $(\mathcal{V}(n))_{n \in \mathbb{N}}$ be open covers of X with the properties of Lemma 4.1. Thus, $(\pi_1^{-1}(\mathcal{V}(n)))_{n \in \mathbb{N}}$ are open covers of the GOTP($X \ast Y$) with the properties of Lemma 4.1. In fact, for every $(x, y) \in X \ast Y$ and (pseudo-)gap (A, B), there exists $n \in \mathbb{N}$ such that $St((x, y), \mathcal{V}(n))$ does not cover the (pseudo-)gap $(\pi_1(A), \pi_1(B))$. Hence, $St((x, y), \pi_1^{-1}(\mathcal{V}(n)))$ does not cover the (pseudo-)gap (A, B).

(2) \implies (1) Let $(\mathcal{U}(n))_{n \in \mathbb{N}}$ be open covers of the GOTP($X \ast Y$) with the properties of Lemma 4.1. Without loss of generality, suppose that $\mathcal{U}(n + 1)$ refines $\mathcal{U}(n)$. For each $n \in \mathbb{N}$, let $I(\mathcal{U}(n)) = \{I(\mathcal{U}) \mid U \in \mathcal{U}(n)\}$ and $E(\mathcal{U}(n)) = X - \cup I(\mathcal{U}(n))$. For $x \in E(\mathcal{U}(n)) \cap I_X$, let $V(x, n) = \{x\}$. For $x \in E(\mathcal{U}(n)) \cap (R_X - I_X)$, there exists $v_x > x$ such that $\langle v_x, y_1 \rangle \in St((x, y_1), \mathcal{U}(n))$. Then let $V(x, n) = [x, v_x]$. Similarly, for $x \in E(\mathcal{U}(n)) \cap (L_X - I_X)$, there exists $u_x < x$ such that $\langle u_x, y_0 \rangle \in St((x, y_0), \mathcal{U}(n))$. Then let $V(x, n) = (u_x, x]$. For $x \in E(\mathcal{U}(n)) - (R_X \cup L_X \cup I_X)$, there exist u_x, v_x such that $u_x < x < v_x$, $\langle u_x, y_0 \rangle \in St((x, y_0), \mathcal{U}(n))$ and $\langle v_x, y_1 \rangle \in St((x, y_1), \mathcal{U}(n))$. Then let $V(x, n) = (u_x, v_x)$ and $\mathcal{V}(n) = I(\mathcal{U}(n)) \cup \{V(x, n) \mid x \in E(\mathcal{U}(n))\}$. Thus, the sequence $(\mathcal{V}(n))_{n \in \mathbb{N}}$ of open covers of X satisfies the properties of Lemma 4.1. In fact, let (A, B) be a (pseudo-)gap of X. Then $(\pi_1^{-1}(A), \pi_1^{-1}(B))$ is a (pseudo-)gap of the GOTP($X \ast Y$). For $x \in X$, there are $m, n \in \mathbb{N}$ such that $St((x, y_0), \mathcal{U}(m))$ and $St((x, y_1), \mathcal{U}(n))$ do not cover the (pseudo-)gap $(\pi_1^{-1}(A), \pi_1^{-1}(B))$ of the GOTP($X \ast Y$). Let $l = \max\{m, n\}$. Then $St((x, y_0), \mathcal{U}(l))$ and $St((x, y_1), \mathcal{U}(l))$ do not cover the (pseudo-)gap $(\pi_1^{-1}(A), \pi_1^{-1}(B))$. Therefore, $St((x, \mathcal{V}(l)))$ does not cover the (pseudo-)gap (A, B) because $\pi_1^{-1}(St((x, \mathcal{V}(l)))) \subseteq St((x, y_0), \mathcal{U}(l)) \cup St((x, y_1), \mathcal{U}(l))$. □

By an argument similar to the proof of Theorem 4.2, we have the following theorem.

Theorem 4.3. Let X and Y be GO-spaces. If Y has both a left and a right endpoint and no countable gaps, then the following are equivalent.
(1) X is an M-space;
(2) the GOTP($X \ast Y$) is an M-space.

The following theorems are improvements of theorems 3.1.3, 3.2.3, 3.1.5, 3.1.6, 3.2.5, 3.2.6 in [6]; Lemma 3 (page 81) and theorems 4.4.3, 4.4.7 in [4] can be proved by some modifications, respectively.

Theorem 4.4. Let X, Y be GO-spaces. If Y has both a left and a right endpoint and

(1) if Y has at least one interior gap, then the GOTP($X \ast Y$) is a p-space $\iff X$ is σ-discrete and Y is a p-space.

(2) if Y has at least one countable gap, then the GOTP($X \ast Y$) is an M-space $\iff X$ is σ-discrete and Y is an M-space.

Theorem 4.5. Let X, Y be GO-spaces. If Y has a left (right) endpoint, but no right (left) one, and

(1) if Y has no interior gaps, then the GOTP($X \ast Y$) is a p-space $\iff X$ is a left-(σ-)left (σ-)p-space, and $D = \{x \in X \mid x$ has no right (left) neighbor point$\}$ is σ-l-(σ-r-)discrete;

(2) if Y has at least one interior gap, then the GOTP($X \ast Y$) is a p-space $\iff X$ is a σ-l-(σ-r-)discrete, Y is a p-space and if X contains neighbor points and the interior gaps are cofinal (coinitial) in Y, then Y has cofinality ω_0 (cofinality ω_0);

(3) if Y has a countable right (left) endgap and no countable interior gaps, then the GOTP($X \ast Y$) is an M-space $\iff X$ is a left-(σ-)left (σ-)M-space, and $D = \{x \in X \mid x$ has no right (left) neighbor point$\}$ is σ-l-(σ-r-)discrete;

(4) if Y has at least one countable interior gap, then the GOTP($X \ast Y$) is an M-space $\iff X$ is a σ-l-(σ-r-)discrete, Y is an M-space and if X contains neighbor points and the countable interior gaps are cofinal (coinitial) in Y, then Y has cofinality ω_0 (cofinality ω_0);

(5) if X has neighbor points, then

(a) X is σ-l-(σ-r-)discrete, Y is σ-discrete, and ω_0 (ω_0^*) is cofinal (coinitial) in Y \iff the GOTP($X \ast Y$) is σ-discrete;

(b) X is σ-l-(σ-r-)discrete, Y is metrizable, and ω_0 (ω_0^*) is cofinal (coinitial) in Y \iff the GOTP($X \ast Y$) is metrizable;
(c) X is σ-l-discrete, Y is perfectly normal, and ω_0 (ω_0^*) is cofinal (coinitial) in Y \iff the GOTP($X \ast Y$) is perfectly normal;

(6) if X does not have neighbor points, then
(a) X is σ-l-discrete and Y is σ-discrete \iff the GOTP($X \ast Y$) is σ-discrete;
(b) X is σ-l-discrete and Y is metrizable \iff the GOTP($X \ast Y$) is metrizable;
(c) X is σ-l-discrete and Y is perfectly normal \iff the GOTP($X \ast Y$) is perfectly normal.

Acknowledgment. The authors are very grateful to the referee for valuable suggestions.

References

(Xu) Department of Mathematics; Nanjing University; Nanjing 210093, P.R. China
E-mail address: tuopmath@nju.edu.cn

(Shi) Department of Mathematics; Nanjing University; Nanjing 210093, P.R. China
E-mail address: wxshi@nju.edu.cn