ON EXTREMELY AMENABLE GROUPS OF HOMEOMORPHISMS

by

VLADIMIR USPENSKIJ

Electronically published on August 5, 2008
ON EXTREMELY AMENABLE GROUPS OF HOMEOMORPHISMS

VLADIMIR USPENSKIJ

ABSTRACT. A topological group G is extremely amenable if every compact G-space has a G-fixed point. Let X be compact and $G \subset \text{Homeo}(X)$. We prove that the following are equivalent: (1) G is extremely amenable; (2) every minimal closed G-invariant subset of $\text{Exp} R$ is a singleton, where R is the closure of the set of all graphs of $g \in G$ in the space $\text{Exp} \; (X^2)$ (Exp stands for the space of closed subsets); (3) for each $n = 1, 2, \ldots$ there is a closed G-invariant subset Y_n of $(\text{Exp} \; X)^n$ such that $\bigcup_{n=1}^{\infty} Y_n$ contains arbitrarily fine covers of X and for every $n \geq 1$ every minimal closed G-invariant subset of $\text{Exp} Y_n$ is a singleton. This yields an alternative proof of Pestov’s theorem that the group of all order-preserving self-homeomorphisms of the Cantor middle-third set (or of the interval $[0, 1]$) is extremely amenable.

1. Introduction

With every\(^1\) topological group G one can associate the greatest ambit $S(G)$ and the universal minimal compact G-space $\mathcal{M}(G)$. To define these objects, recall some definitions. A G-space is a topological space X with a continuous action of G, that is, a map

\(^1\)All spaces are assumed to be Tikhonov, and all maps are assumed to be continuous.
\(G \times X \to X \) satisfying \(g(hx) = (gh)x \) and \(1x = x \) \((g, h \in G, x \in X)\). A map \(f : X \to Y \) between two \(G \)-spaces is \(G \)-equivariant, or a \(G \)-map for short, if \(f(gx) = gf(x) \) for every \(g \in G \) and \(x \in X \).

A semigroup is a set with an associative multiplication. A semigroup \(X \) is right topological if it is a topological space and for every \(y \in X \) the self-map \(x \mapsto xy \) of \(X \) is continuous. (Sometimes the term left topological is used for the same thing.) A subset \(I \subset X \) is a left ideal if \(XI \subset I \). If \(G \) is a topological group, a right topological semigroup compactification of \(G \) is a right topological compact semigroup \(X \) together with a continuous semigroup morphism \(f : G \to X \) with a dense range such that the map \((g, x) \mapsto f(g)x\) from \(G \times X \) to \(X \) is jointly continuous (and hence \(X \) is a \(G \)-space).

The greatest ambit \(S(G) \) for \(G \) is a right topological semigroup compactification which is universal in the usual sense: for any right topological semigroup compactification \(X \) of \(G \) there is a unique morphism \(S(G) \to X \) of right topological semigroups such that the obvious diagram commutes. Considered as a \(G \)-space, \(S(G) \) is characterized by the following property: there is a distinguished point \(e \in S(G) \) such that for every compact \(G \)-space \(Y \) and every \(a \in Y \) there exists a unique \(G \)-map \(f : S(G) \to Y \) such that \(f(e) = a \).

We can take for \(S(G) \) the compactification of \(G \) corresponding to the \(C^* \)-algebra \(\text{RUCB}(G) \) of all bounded right uniformly continuous functions on \(G \), that is, the maximal ideal space of that algebra. (A complex function \(f \) on \(G \) is right uniformly continuous if

\[
\forall \epsilon > 0 \exists V \in \mathcal{N}(G) \forall x, y \in G \ (xy^{-1} \in V \Rightarrow |f(y) - f(x)| < \epsilon),
\]

where \(\mathcal{N}(G) \) is the filter of neighbourhoods of unity.) The \(G \)-space structure on \(S(G) \) comes from the natural continuous action of \(G \) by automorphisms on \(\text{RUCB}(G) \) defined by \(gf(h) = f(g^{-1}h) \) \((g, h \in G, f \in \text{RUCB}(G))\). We shall identify \(G \) with a subspace of \(S(G) \). Closed \(G \)-subspaces of \(S(G) \) are the same as closed left ideals of \(S(G) \).

A \(G \)-space \(X \) is minimal if it has no proper \(G \)-invariant closed subsets or, equivalently, if the orbit \(Gx \) is dense in \(X \) for every \(x \in X \). The universal minimal compact \(G \)-space \(M(G) \) is characterized by the following property: \(M(G) \) is a minimal compact \(G \)-space, and for every compact minimal \(G \)-space \(X \) there exists a \(G \)-map of \(M(G) \) onto \(X \). Since Zorn’s lemma implies that every compact \(G \)-space has a minimal compact \(G \)-subspace, it follows that for every
compact G-space X, minimal or not, there exist a G-map of $\mathcal{M}(G)$ to X. The space $\mathcal{M}(G)$ is unique up to a G-space isomorphism and is isomorphic to any minimal closed left ideal of $\mathcal{S}(G)$, see e.g. [1], [9, Section 4.1], [11, Appendix], [10, Theorem 3.5].

A topological group G is extremely amenable if $\mathcal{M}(G)$ is a singleton or, equivalently, if G has the fixed point on compacta property: every compact G-space X has a G-fixed point, that is, a point $p \in X$ such that $gp = p$ for every $g \in G$. Examples of extremely amenable groups include $\text{Homeo}_+[0,1] = \text{the group of all orientation-preserving self-homeomorphisms of } [0,1]$; $U_\mathcal{S}(H) = \text{the unitary group of a Hilbert space } H$, with the topology inherited from the product H^H; $\text{Iso}(U) = \text{the group of isometries of the Urysohn universal metric space } U$. See Pestov’s book [9] for the proof. Note that a locally compact group $\neq \{1\}$ cannot be extremely amenable, since every locally compact group admits a free action on a compact space [12], [9, Theorem 3.3.2].

We refer the reader to Pestov’s book [9] for various intrinsic characterizations of extremely amenable groups. These characterizations reveal a close connection between Ramsey theory and the notion of extreme amenability. The aim of the present paper is to give another characterization of extremely amenable groups, based on a different approach. For a compact space X let $H(X)$ be the group of all self-homeomorphisms of X, equipped with the compact-open topology. Let G be a topological subgroup of $H(X)$. There is an obvious necessary condition for G to be extremely amenable: every minimal closed G-subset of X must be a singleton. However, this condition is not sufficient. For example, let X be the Hilbert cube, and let $G \subseteq H(X)$ be the stabilizer of a given point $p \in X$. Then the only minimal closed G-subset of X is the singleton $\{p\}$, but G is not extremely amenable [11], since G acts without fixed points on the compact space Φ_p of all maximal chains of closed subsets of X starting at p. The space Φ_p is a subspace of the compact G-space $\text{Exp} \text{Exp} X$, where for a compact space K we denote by $\text{Exp} K$ the compact space of all closed non-empty subsets of K, equipped with the Vietoris topology\footnote{If F is closed in K, the sets $\{A \in \text{Exp} K : A \subseteq F\}$ and $\{A \in \text{Exp} K : A$ meets $F\}$ are closed in $\text{Exp} K$, and the Vietoris topology is generated by the closed sets of this form. If K is a G-space, then so is $\text{Exp} K$, in an obvious way.}. It was indeed necessary to use the second exponent in this example, the first exponent
would not work. One can ask whether in general for every group $G \subset H(X)$ which is not extremely amenable there exists a compact G-space X' derived from X by applying a small number of simple functors, like powers, probability measures, exponents, etc., such that X' contains a closed G-subspace (which can be taken minimal) on which G acts without fixed points. We answer this question in the affirmative.

Consider the action of G on $\text{Exp}(X^2)$ defined by the composition of relations: if $g \in G$, $F \subset X^2$, and $\Gamma_g \subset X^2$ is the graph of g, then $gF = \Gamma_g \circ F = \{(x, gy): (x, y) \in F\}$. This amounts to considering X^2 as the product of two different G-spaces: the first copy of X has the trivial G-structure, and the second copy is the given G-space X. If G is not extremely amenable, then there is a closed minimal G-subspace Y of $\text{Exp}\text{Exp}(X^2)$ that is not a singleton (and hence fixed point free). This follows from:

Theorem 1.1. Let X be compact, G a subgroup of $H(X)$. Denote by R the closure of the set $\{\Gamma_g: g \in G\}$ of the graphs of all $g \in G$ in the space $\text{Exp}(X^2)$. Then G is extremely amenable if and only if every minimal closed G-subset of $\text{Exp} R$ is a singleton.

Here X^2 is the product of the trivial G-space and the given G-space X, as in the paragraph preceding Theorem 1.1, and R is considered as a G-subspace of $\text{Exp}(X^2)$.

For example, let $X = I = [0, 1]$ be the closed unit interval. Consider the group $G = H_+([0, 1])$ of all orientation-preserving self-homeomorphisms of I. The space R in this case consists of all curves Γ in the square I^2 that connect the lower left and upper right corners and “never go down”: if $(x, y) \in \Gamma$, $(x', y') \in \Gamma$ and $x < x'$, then $y \leq y'$ (see the picture in [8, Example 2.5.4]). It can be verified that the only minimal compact G-subsets of $\text{Exp} R$ are singletons (they are of the form $\{a \text{ union of } G\text{-orbits in } R\}$). The proof depends on the following lemma:

Lemma 1.2. Let Δ^n be the n-simplex of all n-tuples $(x_1, \ldots, x_n) \in I^n$ such that $0 \leq x_1 \leq \cdots \leq x_n \leq 1$. Equip Δ^n with the natural action of the group $G = H_+([0, 1])$. Then every minimal closed G-subset of $\text{Exp} \Delta^n$ is a singleton ($= \{a \text{ union of some faces of } \Delta^n\}$).
The idea to consider the action of $G = H_+([0, 1])$ on Δ^n is borrowed from [2], where it is shown that the geometric realization of any simplicial set can be equipped with a natural action of G. We shall not prove Lemma 1.2, since this lemma follows from Pestov's theorem that G is extremely amenable, and I am not aware of a short independent proof of the lemma. The essence of the lemma is that every subset of Δ^n can be either pushed (by an element of G) into the ϵ-neighbourhood of the boundary of the simplex or else can be pushed to approximate the entire simplex within ϵ. Some Ramsey-type argument seems to be necessary for this. Actually Lemma 1.2 may be viewed as a topological equivalent of the finite Ramsey theorem [9, Theorem 1.5.2], since Pestov showed that this theorem has an equivalent reformulation in terms of the notion of a “finitely oscillation stable” dynamical system [9, Section 1.5], and extremely amenable groups are characterized in the same terms [9, Theorem 2.1.11].

An important example of an extremely amenable group is the Polish group $\text{Aut}(\mathbb{Q})$ of all automorphisms of the ordered set \mathbb{Q} of rationals [6], [9, Theorem 2.3.1]. This group is considered with the topology inherited from $(\mathbb{Q}_d)^\mathbb{Q}$, where \mathbb{Q}_d is the set of rationals with the discrete topology. Let $K \subset [0, 1]$ be the usual middle-third Cantor set. The topological group $\text{Aut}(\mathbb{Q})$ is isomorphic to the topological group $G = H_<(K) \subset H(K)$ of all order-preserving self-homeomorphisms of K. To see this, note that pairs of the endpoints of “deleted intervals” (= components of $[0, 1] \setminus K$) form a set which is order-isomorphic to \mathbb{Q}, whence a homomorphism $G \to \text{Aut}(\mathbb{Q})$ which is easily verified to be a topological isomorphism. One can prove that the group $G \simeq \text{Aut}(\mathbb{Q})$ is extremely amenable with the aid of Theorem 1.1. The proof is essentially the same as in the case of the group $G = H_+([0, 1])$. The space R considered in Theorem 1.1 again is the space of “curves”, this time in K^2, that go from $(0, 0)$ to $(1, 1)$ and “look like graphs”, with the exception that they may contain vertical and horizontal parts. The evident analogue of Lemma 1.2 holds for “Cantor simplices” of the form $\{(x_1, \ldots, x_n) \in K^n : 0 \leq x_1 \leq \cdots \leq x_n \leq 1\}$.

Theorem 1.1 may help to answer the following:

Question 1.3. Let P be pseudoarc, $G = H(P)$, and let G_0 be the stabilizer of a given point $x \in P$. Is G_0 extremely amenable?
As explained in [11], this question is motivated by the observation that the argument involving maximal chains, which shows that the stabilizer \(G_0 \subset H(X) \) of a point \(p \in X \) is not extremely amenable if \(X \) is either a Hilbert cube or a compact manifold of dimension \(>1 \), does not work for the pseudoarc. A positive answer to Question 1.3 would imply that the pseudoarc \(P \) can be identified with \(M(G) \) for \(G = H(P) \). The problem whether this is the case was raised in [11] and appears as Problem 6.7.20 in [9].

The suspension \(\Sigma X \) of a space \(X \) is the quotient of \(X \times I \) obtained by collapsing the “bottom” \(X \times \{0\} \) and the “top” \(X \times \{1\} \) to points. Let \(q : \Sigma X \to I \) be the natural projection. The inverse image under \(q \) of the maximal chain \(\{[0,x] : x \in I\} \) of closed subsets of \(I \) is a maximal chain of closed subsets of \(\Sigma X \).

Question 1.4. Let \(Q = I^\omega \) be the Hilbert cube, and \(C \) be the maximal chain of subcontinua of \(\Sigma Q \) considered above. If \(G = H(\Sigma Q) \) and \(G_0 \subset G \) is the stabilizer of \(C \), is \(G_0 \) extremely amenable?

This question is motivated by the search for a good candidate for the space \(M(G) \), where \(G = H(Q) \). The space \(\Phi_c \) of all maximal chains of subcontinua of \(Q \), proved to be minimal by Y. Gutman [5], may be such a candidate [9, Problem 6.4.13]. Recall that for the group \(G = H(K) \), where \(K = 2^\omega \) is the Cantor set, \(M(G) \) can be identified with the space \(\Phi \subset \text{Exp}\text{Exp}K \) of all maximal chains of closed subsets of \(K \) [4], [9, Example 6.7.18].

There is another characterization (Theorem 1.5) of extremely amenable groups in the spirit of Theorem 1.1 which, in combination with Lemma 1.2, readily implies Pestov’s results that \(H_+([0,1]) \) and \(\text{Aut}(\mathbb{Q}) \) are extremely amenable. Let \(X \) be compact, \(Y_n \subset (\text{Exp}X)^n \) for \(n = 1, 2, \ldots \). We say that \(\cup_{n=1}^\infty Y_n \) contains arbitrarily fine covers if for every open cover \(\alpha \) of \(X \) there are \(n \ge 1 \) and \((F_1, \ldots, F_n) \in Y_n \) such that \(\cup_{i=1}^n F_i = X \) and the cover \(\{F_i\}_{i=1}^n \) of \(X \) refines \(\alpha \).

Theorem 1.5. Let \(X \) be compact, \(G \) a subgroup of \(H(X) \). Let \(Y_n \) be a closed \(G \)-invariant subset of \((\text{Exp}X)^n \) \((n = 1, 2, \ldots) \) such that \(\cup_{n=1}^\infty Y_n \) contains arbitrarily fine covers of \(X \). Then \(G \) is extremely amenable if and only if for every \(n \ge 1 \) every minimal closed \(G \)-invariant subset of \(\text{Exp}Y_n \) is a singleton.
Observe that Pestov’s theorem asserting that \(G = H_\alpha([0,1]) \) is extremely amenable follows from Theorem 1.5 and Lemma 1.2: it suffices to take for \(Y_{n+1} \) the collection of all sequences
\[
([0, x_1], [x_1, x_2], \ldots, [x_n, 1]),
\]
where \(0 \leq x_1 \leq \cdots \leq x_n \leq 1 \). The \(G \)-space \(Y_{n+1} \) is isomorphic to the \(n \)-simplex \(\Delta^n \) considered in Lemma 1.2. The argument for \(\text{Aut} (\mathbb{Q}) \simeq H_\alpha(K) \) is similar.

The proof of Theorems 1.1 and 1.5 depends on the notion of a representative family of compact \(G \)-spaces. We introduce this notion in Section 2 and observe that a topological group \(G \) is extremely amenable if (and only if) there exists a representative family \(\{X_\alpha\} \) such that any minimal closed \(G \)-subset of any \(X_\alpha \) is a singleton (Theorem 2.2). In Section 3 we prove that the single space \(\text{Exp} \mathbb{R} \) considered in Theorem 1.1 constitutes a representative family (Theorem 3.1). The conjunction of Theorems 2.2 and 3.1 proves Theorem 1.1. In Section 4 we prove that under the conditions of Theorem 1.5 the sequence \(\{\text{Exp} Y_n\} \) is representative (Theorem 4.2). The conjunction of Theorems 2.2 and 4.2 proves Theorem 1.5.

2. Representative families of \(G \)-spaces

Let \(G \) be a topological group, \(X \) a compact \(G \)-space. For \(g \in G \) the \(g \)-translation of \(X \) is the map \(x \mapsto gx, x \in X \). The enveloping semigroup (or the Ellis semigroup) \(E(X) \) of the dynamical system \((G, X) \) is the closure of the set of all \(g \)-translations, \(g \in G \), in the compact space \(X^X \). This is a right topological semigroup compactification of \(G \), as defined in Section 1. The natural map \(G \to E(X) \) extends to a \(G \)-map \(S(G) \to E(X) \) which is a morphism of right topological semigroups.

Definition 2.1. A family \(\{X_\alpha : \alpha \in A\} \) of compact \(G \)-spaces is **representative** if the family of natural maps \(S(G) \to E(X_\alpha), \alpha \in A \), separates points of \(S(G) \) (and hence yields an embedding of \(S(G) \) into \(\prod_{\alpha \in A} E(X_\alpha) \)).

Theorem 2.2. Let \(G \) be a topological group, \(\{X_\alpha\} \) a representative family of compact \(G \)-spaces. Then \(G \) is extremely amenable if (and only if) every minimal closed \(G \)-subset of every \(X_\alpha \) is a singleton.

This is a special case of a more general theorem:
Theorem 2.3. If \(\{X_\alpha\} \) is a representative family of compact \(G \)-spaces, the universal minimal compact \(G \)-space \(M(G) \) is isomorphic (as a \(G \)-space) to a \(G \)-subspace of a product \(\prod Y_\beta \), where each \(Y_\beta \) is a minimal compact \(G \)-space isomorphic to a \(G \)-subspace of some \(X_\alpha \).

Proof. By definition of a representative family, the greatest ambit \(S(G) \) can be embedded (as a \(G \)-space) into the product \(\prod E(X_\alpha) \) and hence also into the product \(\prod X_\alpha^{X_\alpha} \). Consider \(M(G) \) as a subspace of \(S(G) \) and take for the \(Y_\beta \)'s the projections of \(M(G) \) to the factors \(X_\alpha \). \(\square \)

We now give a sufficient condition for a family of compact \(G \)-spaces to be representative. Let us say that two subsets \(A, B \) of \(G \) are far from each other with respect to the right uniformity if one of the following equivalent conditions holds: (1) the neutral element \(1_G \) of \(G \) is not in the closure of the set \(BA^{-1} \); (2) for some neighbourhood \(U \) of \(1_G \) the sets \(A \) and \(UB \) are disjoint; (3) there exists a right uniformly continuous function \(f : G \to [0, 1] \) such that \(f = 0 \) on \(A \) and \(f = 1 \) on \(B \); (4) \(A \) and \(B \) have disjoint closures in \(S(G) \).

Proposition 2.4. Let \(F \) be a family of compact \(G \)-spaces. Suppose that the following holds:

\((*)\) if \(A, B \subset G \) are far from each other with respect to the right uniformity, then there exists \(X \in F \) and \(p \in X \) such that the sets \(Ap \) and \(Bp \) have disjoint closures in \(X \).

Then \(F \) is representative.

Proof. Consider the natural map \(G \to \prod \{E(X) : X \in F\} \). It defines a compactification \(bG \) of \(G \). We must prove that this compactification is equivalent to \(S(G) \).

Let \(A, B \) be any two subsets of \(G \) with disjoint closures in \(S(G) \). Then \(A \) and \(B \) are far from each other with respect to the right uniformity. According to the condition \((*)\), there exists \(X \in F \) and \(p \in X \) such that the sets \(Ap \) and \(Bp \) have disjoint closures in \(X \). It follows that the images of \(A \) and \(B \) in \(E(X) \) have disjoint closures, and \textit{a fortiori} the images of \(A \) and \(B \) in \(bG \) have disjoint closures. It follows that \(S(G) \) and \(bG \) are equivalent compactifications of \(G \) \[3, Theorem 3.5.5\]. \(\square \)
3. Proof of Theorem 1.1

Recall the setting of Theorem 1.1: X is compact, G is a topological subgroup of $H(X)$. For $g \in G$ let $\Gamma_g = \{(x, gx) : x \in X\} \subset X^2$ be the graph of g, and let R be the closure of the set $\{\Gamma_g : g \in G\}$ in the compact space $\text{Exp}(X^2)$. We consider the action of G on $\text{Exp}(X^2)$ defined by $gF = \{(x, gy) : (x, y) \in F\}$ ($g \in G$, $F \in \text{Exp}(X^2)$), and consider R as a G-subspace of $\text{Exp}(X^2)$.

Theorem 3.1. Let X be a compact space, $G \subset H(X)$. Let $R \subset \text{Exp}(X^2)$ be the compact G-space defined above. The family consisting of the single compact G-space $\text{Exp}R$ is representative.

In other words, $S(G)$ is isomorphic to the enveloping semigroup of $\text{Exp}R$.

Proof. Let $A, B \subset G$ be far from each other (that is, 1_G is not in the closure of BA^{-1}). In virtue of proposition 2.4, it suffices to find $p \in Y = \text{Exp}R$ such that Ap and Bp have disjoint closures in Y.

Let p be the closure of the set $\{\Gamma_g : g \in A^{-1}\}$ in the space $\text{Exp}(X^2)$. Then p is a closed subset of R and hence $p \in Y$. We claim that p has the required property: Ap and Bp have disjoint closures in Y or, which is the same, in $\text{Exp}\text{Exp}(X^2)$.

There exist a continuous pseudometric d on X and $\delta > 0$ such that

$$\forall f \in A \forall g \in B \exists x \in X \ (d(gf^{-1}(x), x) \geq \delta).$$

Let $\Delta \subset X^2$ be the diagonal. Let $C \subset X^2$ be the closed set defined by

$$C = \{(x, y) \in X^2 : d(x, y) \geq \delta\}.$$

Let $K \subset \text{Exp}X^2$ be the closed set defined by

$$K = \{F \subset X^2 : F \text{ meets } C\}.$$

Consider the closed sets $L_1, L_2 \subset \text{Exp}\text{Exp}(X^2)$ defined by

$$L_1 = \{q \subset \text{Exp}(X^2) : q \text{ is closed and } \Delta \in q\}$$

and

$$L_2 = \{q \subset \text{Exp}(X^2) : q \text{ is closed and } q \subset K\}.$$

Since $\Delta \notin K$, the sets L_1 and L_2 are disjoint. It suffices to verify that $Ap \subset L_1$ and $Bp \subset L_2$.

The first inclusion is immediate: if $g \in A$, then for $h = g^{-1}$ we have $\Delta = g\Gamma_h \in gp$, hence $gp \in L_1$. Thus $Ap \subset L_1$. We now prove that $Bp \subset L_2$. Let $g \in B$. If $f \in A$ and $h = f^{-1}$, there exists $x \in X$ such that $d(gh(x), x) \geq \delta$, which means that Γ_{gh} meets C. Hence $g\Gamma_h = \Gamma_{gh} \in K$. It follows that the closed set $g^{-1}K$ contains the set $\{\Gamma_h : h \in A^{-1}\}$ and hence also its closure p. In other words, $gp \subset K$ and hence $gp \in L_2$. □

As noted in Section 1, Theorem 1.1 follows from Theorems 2.2 and 3.1.

Combining Theorems 2.3 and 3.1, we obtain the following generalization of Theorem 1.1:

Theorem 3.2. Let X be a compact space, G a subgroup of $H(X)$. Let R be the same as in Theorems 1.1 and 3.1. Let \mathcal{F} be the family of all minimal closed G-subspaces of $\text{Exp} R$. Then $\mathcal{M}(G)$ is isomorphic to a subspace of a product of members of \mathcal{F} (some factors may be repeated).

4. **Proof of Theorem 1.5**

Theorem 3.1 implies that for any subgroup $G \subset H(X)$ the one-point family $\{\text{ExpExp}(X^2)\}$ is representative (recall that we consider the trivial action on the first factor X). I do not know whether X^2 can be replaced here by X. On the other hand, the following holds:

Theorem 4.1. Let X be a compact space, G a subgroup of $H(X)$. The sequence $\{\text{Exp}(\text{Exp}X^n)\}_{n=1}^\infty$ of compact G-spaces is representative.

This is a special case of a more general theorem:

Theorem 4.2. Let X be a compact space, G a subgroup of $H(X)$. Let Y_n be a closed G-invariant subset of $(\text{Exp}X)^n$ $(n = 1, 2, \ldots)$ such that $\bigcup_{n=1}^\infty Y_n$ contains arbitrarily fine covers of X. Then the sequence $\{\text{Exp}Y_n\}_{n=1}^\infty$ of compact G-spaces is representative.

Proof. Let $A, B \subset G$ be two sets that are far from each other with respect to the right uniformity. In virtue of proposition 2.4, it suffices to find n and a point $p \in \text{Exp}Y_n$ such that Ap and Bp have disjoint closures in $\text{Exp}Y_n$ or, which is the same, in $Z_n = \text{Exp}((\text{Exp}X)^n)$.
There exist a continuous pseudometric d on X and $\delta > 0$ such that A and B are $(d, 2\delta)$-far from each other, in the sense that
\[
\forall f \in A \forall g \in B \exists x \in X \ (d(f(x), g(x)) > 2\delta).
\]
The assumption that $\bigcup_{n=1}^{\infty} Y_n$ contains arbitrarily fine covers implies that we can find $n \geq 1$ and closed sets $C_1, \ldots, C_n \subset X$ of d-diameter $\leq \delta$ such that $(C_1, \ldots, C_n) \in Y_n$ and $\bigcup_{i=1}^{n} C_i = X$. For each $g \in G$, let $F_g = (g^{-1}(C_1), \ldots, g^{-1}(C_n)) \in (\text{Exp} X)^n$. Since Y_n is G-invariant, we have $F_g \in Y_n$. Let p be the closure of the set $\{F_g : g \in A\}$ in the space $(\text{Exp} X)^n$. Then $p \in \text{Exp} Y_n$. We claim that p has the required property: Ap and Bp have disjoint closures in Z_n.

Let $D_i = \{x \in X : d(x, C_i) \geq \delta\}$, $i = 1, \ldots, n$. Consider the closed sets $K_1, K_2 \subset (\text{Exp} X)^n$ defined by
\[
K_1 = \{(F_1, \ldots, F_n) \in (\text{Exp} X)^n : F_i \subset C_i, \ i = 1, \ldots, n\}
\]
and
\[
K_2 = \{(F_1, \ldots, F_n) \in (\text{Exp} X)^n : F_i \text{ meets } D_i \text{ for some } i = 1, \ldots, n\}.
\]
Consider the closed sets $L_1, L_2 \subset Z_n$ defined by
\[
L_1 = \{q \subset (\text{Exp} X)^n : q \text{ is closed and } q \text{ meets } K_1\}
\]
and
\[
L_2 = \{q \subset (\text{Exp} X)^n : q \text{ is closed and } q \subset K_2\}.
\]
Clearly K_1 and K_2 are disjoint, hence L_1 and L_2 are disjoint as well. It suffices to verify that $Ap \subset L_1$ and $Bp \subset L_2$.

The first inclusion is immediate: if $g \in A$, then $F_g \in p$ and $gF_g = (C_1, \ldots, C_n) \in K_1 \cap gp$, hence gp meets K_1 and $gp \in L_1$.

We now prove that $Bp \subset L_2$. Let $h \in B$. If $g \in A$, we can find $x \in X$ such that $d(g(x), h(x)) > 2\delta$ and an index i, $1 \leq i \leq n$, such that $g(x) \in C_i$. Since diam $C_i \leq \delta$, we have $h(x) \in D_i$ and therefore $h(x) \in hg^{-1}(C_i) \cap D_i \neq \emptyset$. It follows that $hF_g = (hg^{-1}(C_1), \ldots, hg^{-1}(C_n)) \in K_2$. This holds for every $g \in A$, and thus we have shown that the closed set $h^{-1}K_2 \subset (\text{Exp} X)^n$ contains the set $\{F_g : g \in A\}$ and hence also its closure p. In other words, $hp \subset K_2$ and hence $hp \in L_2$.

\[\square\]

Theorem 1.5 follows from Theorems 4.2 and 2.2.

Combining Theorems 2.3 and 4.2, we obtain the following generalization of Theorem 1.5:
Theorem 4.3. Let X be a compact space, G a subgroup of $H(X)$. Let Y_n be a closed G-invariant subset of $(\text{Exp} \ X)^n$ ($n = 1, 2, \ldots$) such that $\bigcup_{n=1}^{\infty} Y_n$ contains arbitrarily fine covers of X. Let \mathcal{F} be the family of all (up to an isomorphism) minimal closed G-subspaces of $\text{Exp} Y_n$, $n = 1, 2, \ldots$. Then $\mathcal{M}(G)$ is isomorphic to a subspace of a product of members of \mathcal{F} (some factors may be repeated).

REFERENCES

321 Morton Hall, Department of Mathematics, Ohio University, Athens, Ohio 45701, USA
E-mail address: uspensk@math.ohiou.edu