Remarks on the Generic Existence of Ultrafilters on \(\omega \)

by

Andres Millán

Electronically published on February 12, 2009
REMARKS ON THE GENERIC EXISTENCE
OF ULTRAFILTERS ON ω

ANDRES MILLÁN

Abstract. The purpose of this note is to contrast the generic existence of certain kinds of ultrafilters on ω with the existence of 2^ω-many of them. First, we prove that it is consistent with ZFC that there are 2^ω-many Q-points but Q-points do not exist generically. This answers in the negative a question by R. Michael Canjar. Then we define the strong generic existence of a class of ultrafilters and show that the strong generic existence of selective ultrafilters is equivalent to their generic existence. However, we prove a result that implies that for several classes of ultrafilters, including P-points and nowhere dense ultrafilters, the strong generic existence of P-points is not equivalent to their generic existence.

1. Preliminaries

We use standard set theoretic notation. We say that $\mathcal{A} \subseteq [\omega]^\omega$ has the strong finite intersection property (SFIP) provided that the intersection of any finite subfamily is infinite. The filter generated by \mathcal{A} is denoted $\langle \mathcal{A} \rangle$. The letter \mathcal{F} will always denote a filter on ω containing the cofinite filter. A basis for \mathcal{F} is a family $\mathcal{B} \subseteq \mathcal{F}$ such that for every $F \in \mathcal{F}$ there exists a $B \in \mathcal{B}$ such that $B \subseteq F$. Given any filter \mathcal{F} let $\chi(\mathcal{F})$ be the minimum cardinality of a basis of \mathcal{F}. This $\chi(\mathcal{F})$ is called the character of \mathcal{F}. We say that \mathcal{F}

2000 Mathematics Subject Classification. Primary 03E05; Secondary 03E65, 04A20, 54A25.

Key words and phrases. dominating number and covering number for the meager ideal, generic existence, P-points, Q-points, selective ultrafilters.
©2009 Topology Proceedings.
is κ-generated provided that $\chi(\mathcal{F}) = \kappa$ and \mathcal{F} is $< \kappa$-generated provided that $\chi(\mathcal{F}) < \kappa$. The letters \mathcal{U} and \mathcal{V} will always denote nonprincipal ultrafilters on ω. The cardinal u is defined as

$$u = \min\{|B| : B \text{ is basis of an ultrafilter on } \omega\}.$$

Two filters \mathcal{F}_0 and \mathcal{F}_1 are orthogonal provided that there exists an $X \in [\omega]^\omega$ such that $X \in \mathcal{F}_0$ and $\omega \setminus X \in \mathcal{F}_1$. This is denoted $\mathcal{F}_0 \perp \mathcal{F}_1$. An ultrafilter \mathcal{U} is a Q-point provided that for every finite-to-one $f: \omega \to \omega$ there exists a $U \in \mathcal{U}$ such that $f|U$ is one-to-one. On the other hand, \mathcal{U} is rapid provided that for every $f: \omega \to \omega$ there is a $U \in \mathcal{U}$ such that $|U \cap f(n)| \leq n$ for every $n < \omega$. Every Q-point is rapid but not every rapid ultrafilter is a Q-point. An ultrafilter \mathcal{U} is a P-point provided that for every partition \mathcal{P} of ω either $\mathcal{P} \cap U \neq \emptyset$ or there exists a $U \in \mathcal{U}$ such that $|U \cap P| < \omega$ for every $P \in \mathcal{P}$. We will call such a $U \in \mathcal{U}$ a partial pseudo-selector of \mathcal{P}. If in this definition we require instead that there exists a $U \in \mathcal{U}$ such that $|U \cap P| \leq 1$ for every $P \in \mathcal{P}$, we obtain the definition of a selective or Ramsey ultrafilter, and we will call such a $U \in \mathcal{U}$ a partial selector of \mathcal{P}. It is well known that an ultrafilter is selective if and only if it is both a P-point and a Q-point. An ultrafilter which is both a P-point and a rapid ultrafilter is called semiselective. If $f, g \in \omega^\omega$, we declare $f \preceq g$ when $|\{n < \omega : f(n) > g(n)\}| < \omega$. A family $\mathcal{G} \subseteq \omega^\omega$ is dominating provided that for every $f \in \omega^\omega$ there is a $g \in \mathcal{G}$ such that $f \preceq g$, and it is unbounded provided that there is no single $f \in \omega^\omega$ such that $g \preceq f$ for every $g \in \mathcal{G}$. The cardinals \mathfrak{d}, \mathfrak{b}, $\text{cov}(\mathcal{M})$, and $\text{non}(\mathcal{N})$ denote the minimum cardinality of a dominating family, an unbounded family, a family of meager sets whose union covers \mathbb{R}, and a non-measure zero subset of \mathbb{R}, respectively. These cardinals are related as shown in Figure 1, where $\kappa \to \lambda$ means $\kappa \leq \lambda$.

![Figure 1. A fragment of Cichon's diagram.](image-url)
2. Generic and strong generic existence of ultrafilters

Definition 2.1. Let \mathcal{C} be a class of ultrafilters on ω and let κ be an uncountable cardinal. We abbreviate by $GE(\mathcal{C}, \kappa)$ the statement “every $< \kappa$-generated filter can be extended to an ultrafilter in \mathcal{C}.” Here, GE stands for “generic existence.”

In what follows, we will denote by P, Q, R, S, and SS the classes of P-points, Q-points, rapid, selective, and semi-selective ultrafilters, respectively.

The next three propositions characterize the generic existence of these ultrafilters in terms of $\text{cov}(\mathcal{M})$ and d.

Proposition 2.2 (Ketonen [13]).

$$GE(P, c) \iff d = c.$$

Proposition 2.3 (Canjar [12]).

$$GE(Q, d) \iff \text{cov}(\mathcal{M}) = d \iff GE(R, d).$$

Proposition 2.4 (Canjar [12]; Bartoszynski and Judah [10]).

$$GE(S, c) \iff \text{cov}(\mathcal{M}) = c \iff GE(SS, c).$$

In [12, p. 240], R. Michael Canjar asked, Assuming that c is regular, does the existence of 2^c-many selective ultrafilters imply $GE(S, c)$? We answered this negatively in [17] by constructing a model of ZFC where $c = \omega_2$, and there are 2^c-many selective ultrafilters but $\text{cov}(\mathcal{M}) < c$. The same question for c singular is an unpublished result by James E. Baumgartner who noticed that in the Bell-Kunen model described in [6], $c = \omega_{\omega_1}$, $\text{cov}(\mathcal{M}) = \omega_1$, and there are 2^c-many selective ultrafilters on ω.

Definition 2.5. Let M be a model of ZFC. A forcing notion \mathbb{P} is ω^ω-bounding provided that for every \mathbb{P}-generic filter G over M and for every $f \in \omega^\omega \cap M[G]$, there exists a $g \in \omega^\omega \cap M$ such that $\forall n < \omega f(n) < g(n)$.

Proposition 2.6 (Millán [17]). There is a model N of ZFC such that

$$N \models "c = \omega_2 + |S| = 2^c + \neg GE(S, c)."$$
Proof: Let M be such that $\models \text{ZFC} + \text{CH} + 2^{\omega_1} = 2^{\omega_2} = \omega_3$.

If $P \in M$ is the partial order to add ω_2-many Sacks reals iteratively with countable supports and G is P-generic over M, then

$M[G] \models \text{ZFC} + \mathfrak{c} = \omega_2 + 2^{\omega_1} = 2^{\omega_2} = \omega_3$.

Now, CH in M implies that $\mathfrak{d}^M = \omega_1^M$. Since P is ω_ω-bounding and proper, we have that $\omega_1^M[G] = \omega_1^M = \mathfrak{d}^M = \mathfrak{d}^M[G]$. In particular, $M[G] \models \text{cov}(M) < \mathfrak{c}$.

By Proposition 2.4, $M[G] \models \neg GE(S, \mathfrak{c})$.

To see that $M[G] \models |S| = 2^\mathfrak{c}$, use CH to construct in M, 2^{ω_1}-many selective ultrafilters. Then invoke a theorem by Baumgartner and Richard Laver [4, Theorem 4.5] to extend these to 2^{ω_1}-many selective ultrafilters in $M[G]$. Therefore,

$M[G] \models \mathfrak{c} \text{ is regular} + |S| = 2^\mathfrak{c} + \neg GE(S, \mathfrak{c})$.

Hence, $N = M[G]$ works. □

Canjar also asked [12], Does the existence of $2^\mathfrak{d}$-many Q-points imply $GE(Q, \mathfrak{d})$?

We will answer this question negatively by constructing a model of \text{ZFC}+|Q| = 2^\mathfrak{c} + \neg GE(Q, \mathfrak{d})$.

Definition 2.7. Let $f : \omega \to \omega$ be any function. We say that $U \subseteq \omega$ is f-rare if $f(m) < n$ for every $m, n \in U$ with $m < n$.

Definition 2.8. A family $U \subseteq [\omega]^{\omega}$ is rare if for every $f : \omega \to \omega$ there exists a $U_f \in U$ which is f-rare.

Proposition 2.9 (Mathias [16]; Taylor, unpublished. See also Blass [8]). An ultrafilter U on ω is a Q-point if and only if U is a rare family.

Let \mathcal{U} and \mathcal{V} be two families of subsets of ω and let $\Psi(\mathcal{U}, \mathcal{V})$ be an abbreviation of the statement, “$\mathcal{U} \neq \mathcal{V}$ and both \mathcal{U} and \mathcal{V} are Q-points.”

Lemma 2.10. Let M be a transitive model of ZFC, let $\mathcal{U}, \mathcal{V} \in M$ such that $M \models \Psi(\mathcal{U}, \mathcal{V})$, and let $\mathbb{P} \in M$ be an ω^ω-bounding forcing notion. Then, for any \mathbb{P}-generic filter G over M,

$M[G] \models \text{ZFC} + \exists \mathcal{U} \exists \mathcal{V} \ (\mathcal{U} \subseteq \mathcal{U} \land \mathcal{V} \subseteq \mathcal{V} \land \Psi(\mathcal{U}, \mathcal{V}))$.

Proof: Let \mathcal{U} be a Q-point in M, let G be a \mathbb{P}-generic filter over M, and let $f \in \omega^\omega \cap M[G]$. Then there exists a $g \in \omega^\omega \cap M$ such that $f(n) < g(n)$ for every $n < \omega$. Since $M \models \Psi(\mathcal{U}, \mathcal{V})$,
we can find a \(U_g \in \mathcal{U} \) which is \(g \)-rare. Since \(f \) is dominated by \(g \), we conclude that \(U_g \) is also \(f \)-rare. Therefore, \(M[G] \models \text{“} \mathcal{U} \text{ is rare.} \) If \(M \models \text{“} \mathcal{U} \neq V \text{,”} \) then there exists a \(U \in (\mathcal{U} \setminus \mathcal{V}) \cap M \subseteq (\mathcal{U} \setminus \mathcal{V}) \cap M[G]. \) This implies that \(U \in \mathcal{U} \) and \(\omega \setminus U \in \mathcal{V}. \) If \(\mathcal{U} \) and \(\mathcal{V} \) are ultrafilters in \(M[G], \) extending \(\mathcal{U} \) and \(\mathcal{V}, \) respectively, then \(\mathcal{U} \) and \(\mathcal{V} \) are distinct \(Q \)-points. Hence, \(M[G] \models \text{“} \Psi(\mathcal{U}, \mathcal{V}). \text{”} \)

\[\square \]

Corollary 2.11. If an \(\omega^\omega \)-bounding forcing notion preserves \(P \)-points, then it preserves selective ultrafilters.

Theorem 2.12. There are models \(N_i \) of ZFC for \(i = 0, 1 \) such that

(a) \(N_0 \models \text{“} \text{ZFC} + \varepsilon = \omega_2 + |Q| = 2^\varepsilon + \neg \text{GE}(Q, \emptyset) \text{,”} \) and

(b) \(N_1 \models \text{“} \text{ZFC} + \varepsilon = \omega_{\omega_1} + |Q| = 2^\varepsilon + \neg \text{GE}(Q, \emptyset) \text{.”} \)

\[\text{Proof:} \] Suppose that \(\kappa \in \{ \omega_2, \omega_{\omega_1} \}. \) If \(M \models \text{“} \text{ZFC} + \text{GCH} \text{,”} \) let \(\mathbb{P} = \mathbb{P}(\kappa) \in M \) be the notion of forcing for adding \(\kappa \)-many Cohen reals and let \(G \) be a \(\mathbb{P} \)-generic filter over \(M; \) then we have that \(M[G] \models \text{“} \kappa = \varepsilon = \text{cov}(\mathcal{M}) = 0 \text{.”} \) By Proposition 3.2, it follows that \(M[G] \models \text{“} \varepsilon = \kappa + |Q| = 2^\varepsilon \text{.”} \) Let \(Q = \mathbb{B}(\kappa) \in M[G] \) be the measure algebra for adding \(\kappa \)-many random reals. Let \(H \) be a \(Q \)-generic filter over \(M[G]. \) Then \(\mathbb{Q} \) is \(\omega^\omega \)-bounding and \(M[G][H] \models \text{“} \varepsilon = \kappa = 0 \text{.”} \) By Lemma 2.10, we can extend each of the \(Q \)-points existing in \(M[G] \) to at least one \(Q \)-point in \(M[G][H] \) obtaining \(2^\varepsilon \)-many \(Q \)-points altogether. Hence, \(M[G][H] \models \text{“} |Q| = 2^\varepsilon \text{.”} \) Let \(S \in M[G][H] \) be the set formed by the first \(\omega_1 \)-many random reals added. Since \(S \) is a Sierpinski set in \(M[G][H], \) it is non-measurable, so \(M[G][H] \models \text{“} \text{non}(\mathcal{N}) = \omega_1 \text{.”} \) On the other hand, \(\text{cov}(\mathcal{M}) \leq \text{non}(\mathcal{N}); \) hence, \(M[G][H] \models \text{“} \text{cov}(\mathcal{M}) < 0 \text{.”} \) By Proposition 2.3, \(M[G][H] \models \text{“} |Q| = 2^\varepsilon \wedge \neg \text{GE}(Q, \emptyset) \text{.”} \) Therefore, models \(N_0 = M[G][H], \) when \(\kappa = \omega_2, \) and \(N_1 = M[G][H], \) when \(\kappa = \omega_{\omega_1}, \) satisfy the conclusion of the theorem. \[\square \]

3. Generic versus Strong Generic Existence of Ultrafilters on \(\omega \)

In this section we show that for some classes of ultrafilters \(\mathcal{C}, \) \(\text{GE}(\mathcal{C}, \varepsilon) \) fails to be a good indicator of the abundance of ultrafilters from \(\mathcal{C}. \) As an alternative, we propose \(\text{SGE}(\mathcal{C}, \varepsilon) \) instead.

Definition 3.1. \(\text{SGE}_\lambda(\mathcal{C}, \kappa) \) abbreviates the statement, “every \(\kappa \)-generated filter can be extended to \(2^\lambda \)-many ultrafilters in \(\mathcal{C}, \)” where \(\text{SGE} \) stands for “strong generic existence.” When \(\lambda = \varepsilon, \) we
drop the subindex and write \(SGE(\mathcal{C}, \kappa) \). We will use \(SGE(\mathcal{C}, \kappa) \) to abbreviate “the strong generic existence of ultrafilters in \(\mathcal{C} \).”

Proposition 3.2 (Millán [17]).

\[
SGE(Q, \mathfrak{d}) \iff \operatorname{cov}(\mathcal{M}) = \mathfrak{d}.
\]

Actually, we proved in [17] that the identity \(\operatorname{cov}(\mathcal{M}) = \mathfrak{d} \) implies that every \(< \mathfrak{d} \)-generated filter can be extended to \(2^\kappa \)-many \(\kappa \)-generated \(Q \)-points. The other direction follows from Proposition 2.3 and Lemma 3.5(b) below.

As an immediate consequence of Proposition 3.2, we have the following dichotomy result.

Corollary 3.3. Suppose that \(\kappa \leq \operatorname{cov}(\mathcal{M})^+ \), then either there is a \(\kappa \)-generated \(Q \)-point or there are no \(Q \)-points at all.

Proof: If \(\kappa \leq \operatorname{cov}(\mathcal{M})^+ \), then \(\operatorname{cov}(\mathcal{M}) \leq \mathfrak{d} \leq \kappa \leq \operatorname{cov}(\mathcal{M})^+ \). Suppose that \(\operatorname{cov}(\mathcal{M}) = \mathfrak{d} \). Then we are done by Proposition 3.2 and the remark below it. If \(\operatorname{cov}(\mathcal{M}) < \mathfrak{d} \), then \(\mathfrak{d} = \kappa \). Since, by Proposition 2.9, every \(Q \)-point has character \(\geq \mathfrak{d} \) and either there is a \(Q \)-point (in which case it has character \(\kappa \)) or there are no \(Q \)-points at all, this completes the argument. \(\square \)

Notice that propositions 2.3 and 3.2 can be combined to obtain the following.

Proposition 3.4. \(SGE(Q, \mathfrak{d}) \iff GE(Q, \mathfrak{d}) \).

Lemma 3.5. Let \(\mathcal{C} \) be a class of ultrafilters and let \(\kappa, \lambda, \) and \(\mu \) be cardinals. Then

(a) \(SGE_0(\mathcal{C}, \kappa) \iff GE(\mathcal{C}, \kappa) \),

(b) \(\lambda \leq \mu \Rightarrow SGE\mu(\mathcal{C}, \kappa) \Rightarrow SGE\lambda(\mathcal{C}, \kappa) \), and

(c) \(SGE_1(\mathcal{C}, \kappa) \iff (GE(\mathcal{C}, \kappa) \land \kappa \leq \mathfrak{u}) \).

Proof: Parts (a) and (b) are obvious. For part (c), one implication follows from parts (a) and (b) and the fact that \(\mathfrak{u} < \kappa \Rightarrow \neg SGE_1(\mathcal{C}, \kappa) \). For the other implication, let \(\mathcal{F} \) be a filter with \(\chi(\mathcal{F}) < \kappa \). Since \(\kappa \leq \mathfrak{u} \), \(\mathcal{F} \) cannot be an ultrafilter and there exists an \(X \in [\omega]^\omega \) such that \(\mathcal{F} \cup \{X\} \) and \(\mathcal{F} \cup \{\omega \setminus X\} \) both have the SFIP. Let \(\mathcal{F}_0 \) and \(\mathcal{F}_1 \) be the filters generated by \(\mathcal{F} \cup \{X\} \) and \(\mathcal{F} \cup \{\omega \setminus X\} \), respectively. Then \(\chi(\mathcal{F}_0) = \chi(\mathcal{F}_1) = \chi(\mathcal{F}) < \kappa \). So we can use \(GE(\mathcal{C}, \kappa) \) to extend \(\mathcal{F}_0 \) and \(\mathcal{F}_1 \) to ultrafilters \(\mathcal{U}_0 \) and \(\mathcal{U}_1 \) in \(\mathcal{C} \). By our choice of \(X \), these ultrafilters are distinct. \(\square \)
Definition 3.6. We call a class C of ultrafilters on ω to be κ-inductive provided that there exist formulas $\langle \phi_\xi(Y) : \xi < \kappa \rangle$ such that for every U

$$U \in C \iff \forall \xi < \kappa \exists U \in \mathcal{U} \phi_\xi(U).$$

Lemma 3.7. The classes P, S, and Q are \mathfrak{c}-inductive.

Proof: To see that P is \mathfrak{c}-inductive, let $\langle P_\xi : \xi < \mathfrak{c} \rangle$ be a listing of the partitions of ω into infinitely many pieces and consider for every $\xi < \mathfrak{c}$ the formula

$$\phi_\xi(Y) \iff [(\exists G \in [P_\xi]^{<\omega})(Y \subseteq \bigcup G) \lor (\forall P \in P_\xi)(|Y \cap P| < \omega)].$$

For S, replace $|Y \cap P| < \omega$ by $|Y \cap P| \leq 1$ in the formulas above. For Q, let $\langle P_\xi : \xi < \mathfrak{c} \rangle$ be a listing of the partitions of ω into finite pieces and consider $\phi_\xi(Y) \iff (\forall P \in P_\xi)(|Y \cap P| \leq 1)$ for every $\xi < \mathfrak{c}$. □

Lemma 3.8. The class Q is \mathfrak{d}-inductive.

Proof: Let $\langle f_\xi \in \omega^\omega : \xi < \mathfrak{d} \rangle$ be a dominating family and consider for each $\xi < \mathfrak{d}$ the formula

$$\phi_\xi(Y) \iff (\forall m < \omega)(\forall n < \omega) (m, n \in Y \land m < n \Rightarrow f_\xi(m) < n).$$

Then the \mathfrak{d}-inductivity of Q follows from Proposition 2.9. □

Theorem 3.9. If $\kappa \geq 1$ and C is a κ-inductive class of ultrafilters, then

$$SGE_\kappa(C, \kappa) \iff (GE(C, \kappa) \land \kappa \leq \mathfrak{u}).$$

Proof: It is obvious that $SGE_\kappa(C, \kappa)$ implies both $GE(C, \kappa)$ and $\kappa \leq \mathfrak{u}$. So suppose that $G(C, \kappa)$ and $\kappa \leq \mathfrak{u}$ hold and that \mathcal{F} is a κ-generated filter. We will construct inductively a tree $\langle \mathcal{F}_s : s \in 2^{<\kappa} \rangle$ of filters satisfying the following requirements for every $\xi < \kappa$ and $s \in 2^\xi$.

1. $\mathcal{F}_0 = \mathcal{F}$;
2. $\mathcal{F}_{s\gamma} \subseteq \mathcal{F}_s$ for every $\gamma < \xi$;
3. $\chi(\mathcal{F}_s) \leq \max\{\chi(\mathcal{F}), |\xi|\}$;
4. $\mathcal{F}_{s^{\langle 0 \rangle}} \perp \mathcal{F}_{s^{\langle 1 \rangle}}$;
5. $\mathcal{F}_s = \bigcup\{\mathcal{F}_{s\gamma} : \gamma < \xi\}$ if ξ is limit; and
6. there exists $X_\xi^i \in \mathcal{F}_{s^{\langle i \rangle}}$ such that $\phi_\xi(X_\xi^i)$ hold for $i = 0, 1$.

□
If this construction can be completed, then for every $g \in 2^\kappa$, let \mathcal{U}_g be an ultrafilter extending the filter $\mathcal{F}_g = \bigcup\{\mathcal{F}_g|\xi : \xi < \kappa\}$. By conditions (1), (4), and (6), the ultrafilters \mathcal{U}_g extend \mathcal{F}, are pairwise distinct, and are all in \mathcal{C}. To see that this construction can be completed, we need only to check the inductive hypothesis for the successor ordinal case. Suppose that $s \in 2^\xi$ and that \mathcal{F}_s has been defined. We want to define $\mathcal{F}_s \wedge \langle 0 \rangle$ and $\mathcal{F}_s \wedge \langle 1 \rangle$. By the induction hypothesis, $\chi(\mathcal{F}_s) < \kappa \leq u$, so we can find a $Y \in [\omega]^{\omega}$ such that $\mathcal{F}_s \cup \{Y\}$ and $\mathcal{F}_s \cup \{\omega \setminus Y\}$ have both SFIP. Since $\mathcal{F}^*_0 = \langle \mathcal{F}_s \cup \{Y\} \rangle$ and $\mathcal{F}^*_1 = \langle \mathcal{F}_s \cup \{\omega \setminus Y\} \rangle$, we have that $\chi(\mathcal{F}^*_0) = \chi(\mathcal{F}^*_1) = \chi(\mathcal{F}_s) < \kappa$. Also, since $GE(\mathcal{C}, \kappa)$ holds, there exist $U_i \in \mathcal{C}$ extending \mathcal{F}^*_i for $i = 0, 1$. Thus, it is possible to pick $X^i_\xi \in U_i$ such that $\phi(\theta^i_\xi)$ for $i = 0, 1$. Put $\mathcal{F}_s \wedge \langle 0 \rangle = \langle \mathcal{F}_s \cup \{Y, X^0_\xi\} \rangle$ and $\mathcal{F}_s \wedge \langle 1 \rangle = \langle \mathcal{F}_s \cup \{\omega \setminus Y, X^1_\xi\} \rangle$. Then these filters satisfy the requirements. \hfill \square

Corollary 3.10. If \mathcal{C} is \mathfrak{c}-inductive like P, Q, or S, then

$$SGE(\mathcal{C}, \mathfrak{c}) \iff SGE_1(\mathcal{C}, \mathfrak{c}).$$

Proof: This follows from Lemma 3.5(c), Lemma 3.7, and Theorem 3.9. \hfill \square

Corollary 3.11. $SGE(S, \mathfrak{c}) \iff GE(S, \mathfrak{c})$.

Proof: This follows from Theorem 3.9 and Proposition 2.4. \hfill \square

Corollary 3.12. $SGE(P, \mathfrak{c}) \iff \min\{\mathfrak{u}, \mathfrak{d}\} = \mathfrak{c}$.

Proof: This follows from Theorem 3.9 and Proposition 2.2. \hfill \square

By a theorem of Jason Aubrey [1], $\min\{\mathfrak{u}, \mathfrak{d}\} = \min\{\mathfrak{r}, \mathfrak{d}\}$. Here, \mathfrak{r} is the refinement or reaping number. (See [7].) Therefore, we can rephrase Corollary 3.12 as

Corollary 3.13. $SGE(P, \mathfrak{c}) \iff \min\{\mathfrak{r}, \mathfrak{d}\} = \mathfrak{c}$.

Theorem 3.14. There is a model N of ZFC such that

$$N \models "GE(P, \mathfrak{c}) \land \neg SGE(P, \mathfrak{c})."$$

Proof: Let M be such that $M \models "ZFC + GCH,\"$ and consider in M a countable support forcing iteration $\langle (\mathbb{P}_\alpha, \dot{Q}_\alpha) : \alpha < \omega_2 \rangle$ such that

$$\forall \alpha < \omega_2 \quad \forces_{\alpha} "\dot{Q}_\alpha \simeq \text{rational perfect set forcing}"$$
THE GENERIC EXISTENCE OF ULTRAFILTERS ON \(\omega \) (see [19]; [10, p. 360]; and [9]), and let \(G \) be a \(\mathbb{P}_{\omega_2} \)-generic filter over \(M \). Then \(P \)-points in \(M \) generate \(P \)-points in \(M[G] \) and
\[
M[G] \models \text{"Every } P \text{-point is } \omega_1 \text{-generated } + d = c = \omega_2 = 2^{\omega_1}."
\]
(See [9].) Therefore,
\[
M[G] \models \text{"} GE(P, c) \land |P| = c. \text{"
}\]
Hence, model \(N = M[G] \) works.

\[\square\]

Corollary 3.15. \(\text{Con}(ZFC) \Rightarrow \text{Con}(ZFC + GE(P, c) + \neg SGE(P, c)) \).

4. **Other classes of ultrafilters**

Theorem 3.9 can be applied to get a similar characterization for \(SGE(\mathcal{C}, c) \) as in Corollary 3.13 for other classes of ultrafilters as well. These depend, of course, on the characterization of \(GE(\mathcal{C}, c) \) in terms of cardinal invariants.

Definition 4.1 (Baumgartner [3]). Let \(X \) be a non-empty set and let \(I \subseteq \mathcal{P}(X) \) be a set containing the singletons and closed under subsets. An ultrafilter \(U \) on \(\omega \) is an \(I \)-ultrafilter provided that for every \(f : \omega \to X \) there exists a \(U \in U \) such that \(f[U] \in I \).

If \(X = 2^\omega \) and \(I \) is the ideal of countable closed, nowhere-dense, measure-zero subsets of \(2^\omega \), then \(I \)-ultrafilters are called **countable closed, nowhere-dense, and measure-zero ultrafilters**, respectively. If \(X = \omega_1 \) and \(I \) is the ideal of \(\sigma \)-compact subsets of \(\omega_1 \), then the \(I \)-ultrafilters are called **\(\sigma \)-compact ultrafilters**. If \(\alpha < \omega_1 \), put \(I_\alpha = \{ A \subseteq \omega_1 : o.t(A) \leq \alpha \} \) and \(J_\alpha = \{ A \subseteq \omega_1 : o.t(A) < \alpha \} \). If \(I = I_\alpha \) or \(I = J_\alpha \) for some \(\alpha < \omega_1 \), then \(I \)-ultrafilters are called **ordinal ultrafilters**. Let \(O, CC, ND, MZ, \) and \(K_\sigma \) denote the classes of ordinal, countable closed, nowhere-dense, measure-zero, and \(\sigma \)-compact ultrafilters, respectively.

Lemma 4.2. If \(\mathcal{C} \in \{ O, CC, ND, MZ, K_\sigma \} \), then \(\mathcal{C} \) is \(c \)-inductive.

Proof: Let \(\langle f_\xi : \xi < c \rangle \) be a listing of \(X^\omega \) and consider the family of formulas \(\langle \phi_\xi(Y) : \xi < c \rangle \) where \(\phi_\xi(Y) \iff f_\xi[Y] \in I \).

We refer the reader to [5] and [11] for proofs of the following propositions.

Proposition 4.3 (Brendle [11]). If \(\mathcal{C} \in \{ O, CC \} \), then
\[
GE(\mathcal{C}, c) \iff d = c.
\]
Proposition 4.4 (Brendle [11]). \(GE(ND, c) \iff \text{cof}(\mathcal{M}) = c\).

Proposition 4.5 (Brendle [11]). \(GE(MZ, c) \iff \text{cof}(\mathcal{E}, \mathcal{M}) = c\).

Proposition 4.6 (Barney [5]). \(GE(K_\sigma, c) \iff d = c\).

Theorem 4.7. If \(\mathcal{C} \in \{O, CC, K_\sigma\}\), then
\[
\begin{align*}
(a) & \quad SGE(\mathcal{C}, c) \iff \min\{u, d\} = c; \\
(b) & \quad SGE(ND, c) \iff \min\{u, \text{cof}(\mathcal{M})\} = c; \\
(c) & \quad SGE(MZ, c) \iff \min\{u, \text{cof}(\mathcal{E}, \mathcal{M})\} = c.
\end{align*}
\]

Proof: Apply Theorem 3.9 and propositions 4.1 and 4.4 for (a), Proposition 4.2 for (b), and Proposition 4.3 for (c). \(\Box\)

Theorem 4.8. There is a model \(N\) of \(ZFC\) such that if \(\mathcal{C} \in \{O, CC, ND, MZ, K_\sigma\}\), then
\[
N \models \text{"}GE(\mathcal{C}, c) \land \neg SGE(\mathcal{C}, c)\text{"}.
\]

Proof: The model from Theorem 3.14 works since it is known that in this model, \(d = \text{cof}(\mathcal{M}) = \text{cof}(\mathcal{E}, \mathcal{M}) = c\). \(\Box\)

References

