Subsemigroups of βS Containing the Idempotents

by

Neil Hindman and Dona Strauss

Electronically published on September 4, 2009
SUBSEMIGROUPS OF βS
CONTAINING THE IDEMPOTENTS

NEIL HINDMAN AND DONA STRAUSS

ABSTRACT. Let S be a discrete semigroup and let $P(S)$ be the set of points p in the Stone-Cech compactification, βS, of S with the property that every neighborhood of p contains arbitrarily large finite sum sets or finite product sets, (depending on whether the operation in S is denoted by $+$ or \cdot). Then $P(S)$ contains all of the idempotents of βS, where the operation on βS extends that on S making βS into a right topological semigroup with S contained in its topological center. If S is commutative, then $P(S)$ is a compact subsemigroup of βS. Responding to a question of Vitaly Bergelson, we show that if S is any semigroup which can be embedded in a compact topological group, then $P(S)$ is not the smallest closed semigroup containing the idempotents of βS and the closure of the semigroup generated by the idempotents of βS is not a semigroup.

1. INTRODUCTION

In 1933 Richard Rado published [8] his remarkable theorem characterizing those finite matrices with rational coefficients which are kernel partition regular over the set \mathbb{N} of positive integers. (A $u \times v$ matrix A is kernel partition regular over \mathbb{N} if and only if whenever \mathbb{N} is partitioned into finitely many classes, there will exist $\vec{x} \in \mathbb{N}^v$ with all of its entries in one class such that $A\vec{x} = \vec{0}$.)

2000 Mathematics Subject Classification. Primary 54D80, 22A15; Secondary 54H13, 05D10.

Key words and phrases. Idempotents, subsemigroup, finite sums.

The first author acknowledges support received from the National Science Foundation via Grant DMS-0554803.

©2009 Topology Proceedings.
As an easy consequence, one sees that the matrix \(\begin{pmatrix} 1 & 1 & -1 \end{pmatrix} \) is kernel partition regular over \(\mathbb{N} \). That is, whenever \(\mathbb{N} \) is partitioned into finitely many cells, there will be in one cell some \(x, y, \) and \(z \) with \(x + y = z \). This result is Schur’s Theorem [10]. More generally, it is an easy consequence of Rado’s Theorem that whenever \(r \in \mathbb{N} \) and \(\mathbb{N} \) is divided into finitely many cells, there will exist a finite sequence \(\langle x_t \rangle_{t=1}^r \) in \(\mathbb{N} \) such that \(\mathcal{F}S(\langle x_t \rangle_{t=1}^r) \) is contained in one cell, where \(\mathcal{F}S(\langle x_t \rangle_{t=1}^r) = \{ \sum_{t \in F} x_t : \emptyset \neq F \subseteq \{1, 2, \ldots, r\} \} \). (See [4, Corollary 2.4] for the details of how this follows easily from Rado’s Theorem.) Much later Jon Sanders [9] and Jon Folkman (unpublished) independently derived this same result.

In [3] an infinite version of this result was obtained. That is, whenever \(\mathbb{N} \) is divided into finitely many cells, there will exist a sequence \(\langle x_t \rangle_{t=1}^\infty \) in \(\mathbb{N} \) such that \(\mathcal{F}S(\langle x_t \rangle_{t=1}^\infty) \) is contained in one cell, where \(\mathcal{F}S(\langle x_t \rangle_{t=1}^\infty) = \{ \sum_{t \in F} x_t : F \in \mathcal{P}_f(\mathbb{N}) \} \). (Here \(\mathcal{P}_f(X) \) is the set of finite nonempty subsets of \(X \).) The proof given in [3] was excruciatingly complicated. There is a much simpler proof due to Fred Galvin and Steven Glazer, not published by either of them. See the Notes to [6, Chapter 5] for the history of the discovery of this proof.

Theorem 1.1. Let \(A \subseteq \mathbb{N} \). There exists a sequence \(\langle x_t \rangle_{t=1}^\infty \) in \(\mathbb{N} \) with \(\mathcal{F}S(\langle x_t \rangle_{t=1}^\infty) \subseteq A \) if and only if there exists an idempotent \(p \) in \((\beta \mathbb{N}, +)\) such that \(A \in p \).

Proof. [6, Theorem 5.12]. \(\square \)

In fact Theorem 1.1 holds more generally. Given any semigroup \((S, \cdot)\), not necessarily commutative, and given a sequence \(\langle x_t \rangle_{t=1}^\infty \) in \(S \), one defines \(\mathcal{F}P(\langle x_t \rangle_{t=1}^\infty) = \{ \prod_{t \in F} x_t : F \in \mathcal{P}_f(\mathbb{N}) \} \), where the product \(\prod_{t \in F} x_t \) is taken in increasing order of indices. One then has that for any \(A \subseteq S \) there exists a sequence \(\langle x_t \rangle_{t=1}^\infty \) in \(S \) with \(\mathcal{F}P(\langle x_t \rangle_{t=1}^\infty) \subseteq A \) if and only if there exists an idempotent \(p \) in \((\beta S, \cdot)\) such that \(A \in p \).

Given a discrete space \(X \), we are taking the points of \(\beta X \) to be the ultrafilters on \(X \), identifying the principal ultrafilters with the points of \(X \) and thereby pretending that \(X \subseteq \beta X \). We let \(X^* = \beta X \setminus X \). Given \(A \subseteq X \), \(\overline{A} = \text{cl}_{\beta X} A = \{ p \in \beta S : A \in p \} \). If \((S, \cdot)\) is a discrete semigroup, the operation extends to \(\beta S \) making \((\beta S, \cdot)\) a right topological semigroup (meaning that for each \(p \in \beta S \), the
function \(\rho_p : \beta S \to \beta S \) defined by \(\rho_p(q) = q \cdot p \) is continuous) with \(S \) contained in its topological center (meaning that for each \(x \in S \), the function \(\lambda_x : \beta S \to \beta S \) defined by \(\lambda_x(q) = x \cdot q \) is continuous). Given \(p, q \in \beta S \) and \(A \subseteq S \), one has that \(A \in p \cdot q \) if and only if \(\{ x \in S : x^{-1}A \in q \} \in p \), where \(x^{-1}A = \{ y \in S : x \cdot y \in A \} \). If the operation in \(S \) is denoted by +, we have that \(A \in p + q \) if and only if \(\{ x \in S : -x + A \in q \} \in p \), where \(-x + A = \{ y \in S : x + y \in A \} \). It is a fundamental fact, due originally to R. Ellis [1], that any compact Hausdorff right topological semigroup has an idempotent. See [6] for an elementary introduction to the structure of \(\beta S \).

Recently Vitaly Bergelson asked whether there is some nice algebraic description of the set of ultrafilters on \(\mathbb{N} \), every member of which contains arbitrarily large finite sums sets. This would be the set \(P(\mathbb{N}) \) defined below. (We state the definition multiplicatively because we will be dealing with these sets in a quite general context.)

Definition 1.2. Let \((S, \cdot)\) be a semigroup.

(a) For each \(r \in \mathbb{N} \),

\[
P_r(S) = \{ p \in S^* : (\forall A \in p)(\exists \langle x_t \rangle_{t=1}^r)(FP(\langle x_t \rangle_{t=1}^r) \subseteq A) \}.
\]

(b) \(P(S) = \bigcap_{r=1}^{\infty} P_r(S) \).

If \(S \) is commutative, it is easy to see that \(P_r(S) \) is a compact subsemigroup of \(\beta S \). (Given \(r \in \mathbb{N} \), \(p, q \in P_r(S) \), and \(A \in p \cdot q \), one has that \(B = \{ x \in S : x^{-1}A \in q \} \in p \) so pick \(\langle x_t \rangle_{t=1}^r \) with \(FP(\langle x_t \rangle_{t=1}^r) \subseteq B \). Then \(C = \bigcap \{ z^{-1}A : z \in FP(\langle x_t \rangle_{t=1}^r) \} \subseteq q \) so pick \(\langle y_t \rangle_{t=1}^r \) with \(FP(\langle y_t \rangle_{t=1}^r) \subseteq C \). Then \(FP(\langle x_t \cdot y_t \rangle_{t=1}^r) \subseteq A \).) By [5, Theorem 3.9] (using a result of Nešetřil and Rödl [7]), for each \(r > 1 \), \(P_{r+1}(\mathbb{N}, +) \) is a proper subset of \(P_r(\mathbb{N}, +) \). Further, it is an immediate consequence of Theorem 1.1 that all idempotents of \(\beta \mathbb{N} \) are in \(P(\mathbb{N}, +) \). Thus, a tempting answer to Bergelson’s question would be that \(P(\mathbb{N}, +) \) is the smallest compact subsemigroup of \((\beta \mathbb{N}, +) \) containing the idempotents.

However, it was shown in [5] that the closure of the semigroup generated by the idempotents of \((\beta \mathbb{N}, +) \) is not a semigroup and that there is a compact subsemigroup of \((\beta \mathbb{N}, +) \) (denoted there by \(M \)) which lies strictly between the smallest subsemigroup of \((\beta \mathbb{N}, +) \) containing the idempotents and \(P(\mathbb{N}, +) \). In Section 2 of this paper we extend these results to semigroups which can be algebraically embedded in compact topological groups.
In Section 3 we restrict our attention to $P(N, +)$, noting that as a consequence of the following result, $P(N, +)$ is an ideal of $(\beta N, \cdot)$.

Theorem 1.3. Let $r \in N$. Then $P_r(N, +)$ is an ideal of $(\beta N, \cdot)$.

Proof. Let $p \in P_r(N, +)$ and let $q \in \beta N$. To see that $p \cdot q \in P_r(N, +)$, let $A \in p \cdot q$. Pick $\langle x_t \rangle_{t=1}^r$ such that $FS(\langle x_t \rangle_{t=1}^r) \subseteq \{y \in N : y^{-1}A \in q\}$. Then $B = \bigcap\{y^{-1}A : y \in FS(\langle x_t \rangle_{t=1}^r)\} \in q$ so pick $a \in B$. Then $FS(\langle a \cdot x_t \rangle_{t=1}^r) \subseteq A$.

To see that $q \cdot p \in P_r(N, +)$, let $A \in q \cdot p$. Pick $a \in N$ such that $a^{-1}A \in p$ and pick $\langle x_t \rangle_{t=1}^r$ such that $FS(\langle x_t \rangle_{t=1}^r) \subseteq a^{-1}A$. Then $FS(\langle a \cdot x_t \rangle_{t=1}^r) \subseteq A$. \Box

Another tempting answer to Bergelson’s question then becomes that $P(N, +)$ is the smallest compact subset of βN which is both a subsemigroup of $(\beta N, +)$ and an ideal of $(\beta N, \cdot)$. We show in Section 3 that this is not the case.

All hypothesized topological spaces are Hausdorff.

2. Semigroups embeddable in compact topological groups

We show in this section that if S is any semigroup which can be embedded in a compact topological group, then the closure of the semigroup generated by the idempotents of S^* is not a semigroup. (As is well known, such semigroups include all free semigroups and all commutative cancellative semigroups.) We also show, under the same assumption on S, that there is an element of $P(S)$ which is not a member of the smallest compact subsemigroup of βS containing the idempotents of S^*. (This result is less interesting in the case that S is not commutative, since then it is unlikely that $P(S)$ will be a semigroup.)

The following lemma is, as we are fond of saying, well known by those who know it well.

Lemma 2.1. Let (S, \cdot) be a countably infinite semigroup. If S can be algebraically embedded in a compact topological group, then S can be algebraically embedded in a compact metrizable topological group.
Proof. Let G be a compact topological group with identity 1 and let $\varphi : S \to G$ be an injective homomorphism. Let

$$H = \{ \varphi(s)\varphi(t)^{-1} : s, t \in S \text{ and } s \neq t \}.$$

For $a \in H$ pick by [2, Theorem 22.14] a compact metrizable topological group C_a and a continuous homomorphism $h_a : G \to C_a$ such that $h_a(a) \neq h_a(1)$. Let $C = \times_{a \in H} C_a$ and define $\psi : S \to C$ by $\psi(s)(a) = h_a(\varphi(s))$ for each $a \in H$. Given $s \neq t$ in S, if $a = \varphi(s)\varphi(t)^{-1}$, then $\psi(s)(a) \neq \psi(t)(a)$ so ψ is injective.

□

The Lemma 2.3 will be used in the proofs of both of the theorems of this section. If $n \in \mathbb{N}$, supp(n) is the subset of ω determined by $n = \sum_{t \in \text{supp}(n)} 2^t$, where $\omega = \mathbb{N} \cup \{0\}$.

Definition 2.2.

(a) $\mathbb{H} = \bigcap_{n=1}^{\infty} c\ell_{\beta\mathbb{N}}(\mathbb{N}2^n)$.

(b) Let X be a subset of a semigroup. A function $\psi : \omega \to X$ will be called an \mathbb{H}-map if it is bijective and if $\psi(m + n) = \psi(m)\psi(n)$ whenever $m, n \in \mathbb{N}$ satisfy $\max \text{supp}(m) + 1 < \min \text{supp}(n)$.

Note that by [6, Lemma 6.6], \mathbb{H} contains all of the idempotents of $(\beta\mathbb{N}, +)$.

Lemma 2.3. Let S be a countable semigroup which can be embedded in a compact topological group. Then there exist a countable group G containing S, an \mathbb{H}-map $\psi : \omega \to G$, and a subsemigroup V of G^* which contains all of the idempotents of G^* such that $\tilde{\psi}|_{\mathbb{H}}$ is an isomorphism from \mathbb{H} onto V. Further, there is a sequence $\langle s_n \rangle_{n=1}^{\infty}$ in S such that for each n, $\max \text{supp} \psi^{-1}(s_n) + 1 < \min \text{supp} \psi^{-1}(s_{n+1})$.

Proof. By Lemma 2.1 there exist a compact metrizable topological group C with identity 1 and an injective homomorphism $\varphi : S \to C$. Let G be the subgroup of C generated by $\varphi[S]$ and let βG_d be the Stone-Čech compactification of G with the discrete topology. We may assume in fact that $S \subseteq G$. Let $\iota : G \to C$ be the inclusion map and let $\tilde{\iota} : \beta G_d \to C$ be its continuous extension. Let $V = G^* \cap \tilde{\iota}^{-1}\{1\}$. By [6, Theorem 7.28] V is a subsemigroup of G^* which contains all of the idempotents of G^* and there is an \mathbb{H}-map $\psi : \omega \to G$ such that $\tilde{\psi}|_{\mathbb{H}}$ is an isomorphism from \mathbb{H} onto V.
Now pick an idempotent $q \in S^*$. (By [6, Theorem 4.36] S^* is a subsemigroup of βS so has an idempotent.) We choose the sequence $(s_n)_{n=1}^\infty$ inductively, letting s_1 be any element of S. Let $n \in \mathbb{N}$ and assume that s_1, s_2, \ldots, s_n have been chosen. Let $k = \max \operatorname{supp} \psi^{-1}(s_n) + 2$. Now $q \in V$ so $\psi^{-1}(q)$ is an idempotent in \mathbb{H} and thus $\mathbb{N}2^k \in \psi^{-1}(q)$. By [6, Lemma 3.30] $\psi[\mathbb{N}2^k] \in q$ so pick $s_{n+1} \in \psi[\mathbb{N}2^k]$. □

Note that the idempotents p_n hypothesized in the next lemma exist by [6, Lemma 5.11].

Lemma 2.4. Let $(x_t)_{t=1}^\infty$ be a sequence in \mathbb{N} such that for all t, $\max \operatorname{supp}(x_t) < \min \operatorname{supp}(x_{t+1})$. Let $\{E_n : n \in \mathbb{N}\}$ be a partition of \mathbb{N} into infinite sets and for each n let p_n be an idempotent in $\beta \mathbb{N}$ such that for each $m \in \mathbb{N}$,

$$\{\sum_{t \in F} x_t : F \in \mathcal{P}_f(E_n) \text{ and } \min F > m\} \in p_n.$$

Let p be a cluster point in $\beta \mathbb{N}$ of the sequence $(p_n)_{n=1}^\infty$ and let $A = \{\sum_{t \in F} x_t + \sum_{t \in G} x_t : F \in \mathcal{P}_f(E_1) \text{ and } (\exists n)(\max F < n < \min G \text{ and } G \in \mathcal{P}_f(E_n))\}$. Then $A \in p_1 + p$ and there do not exist $r \in \mathbb{H}$ and an idempotent q such that $A \in r + q$.

Proof. To see that $A \in p_1 + p$ we show that

$$FS((x_t)_{t \in E_1}) \subseteq \{a \in \mathbb{N} : -a + A \in p\}.$$

So let $F \in \mathcal{P}_f(E_1)$, let $a = \sum_{t \in F} x_t$, and let

$$B = \{\sum_{t \in G} x_t : (\exists n)(\max F < n < \min G \text{ and } G \in \mathcal{P}_f(E_n))\}.$$

Then $B \subseteq -a + A$ so it suffices to show that $B \in p$. Suppose instead $B \notin p$ and pick $n > \max F$ such that $p_n \notin \mathbb{N} \setminus B$. Then $\{\sum_{t \in G} x_t : G \in \mathcal{P}_f(E_n) \text{ and } \min G > n\}$ is an element of p_n which is contained in B, a contradiction.

Now suppose that we have $r \in \mathbb{H}$ and an idempotent q such that $A \in r + q$. Let $X = FS((x_t)_{t \in E_1})$. We claim first that $X \in q$, so suppose instead that $X \notin q$. Pick $a \in \mathbb{N}$ such that $-a + A \in q$ and pick $k \in \mathbb{N}$ such that $\max \operatorname{supp}(a) < \min \operatorname{supp}(x_k)$ and let $m = \max \operatorname{supp}(x_k) + 1$. Pick $b \in (-a + A) \cap \mathbb{N}2^m \setminus X$. Then $a + b = \sum_{t \in F} x_t + \sum_{t \in G} x_t$, where $F \in \mathcal{P}_f(E_1)$ and there is some n with $\max F < n < \min G$ and $G \in \mathcal{P}_f(E_n)$. Let $H = \{t \in F \cup G : t < k\}$ and let $K = \{t \in F \cup G : t > k\}$. Then since $\operatorname{supp}(x_k) \cap \operatorname{supp}(a + b) = \emptyset$, ...
we have $H \cup K = F \cup G$. Also, $\max \text{supp}(a) < \min \text{supp}(\sum_{t \in K} x_t)$ and $\max \text{supp}(\sum_{t \in H} x_t) < \min \text{supp}(b)$ so $a = \sum_{t \in H} x_t$ and $b = \sum_{t \in K} x_t$, so $b \in X$, a contradiction.

Define $g : X \to \mathbb{N}$ by $g(\sum_{t \in F} x_t) = n$ if and only if $\max F \in E_n$. We next claim that there is some $n \in \mathbb{N}$ such that

$$\{y \in X : g(y) \leq n\} \in q.$$

So suppose instead that for all $n \in \mathbb{N}$, $\{y \in X : g(y) > n\} \in q$. Pick $a \in \mathbb{N}$ such that $-a + A \in q$. Let $l = \max \text{supp}(a)$. Now

$$\{b \in (-a + A) : -b + (-a + A) \in q\} \in q,$$

so pick $b \in (-a + A) \cap X \cap \mathbb{N}^{2^{l+1}}$ such that $-b + (-a + A) \in q$. Pick $F \in \mathcal{P}_f(E_1)$ and $n \in \mathbb{N}$ such that $\max F < n < \min G$, $G \in \mathcal{P}_f(E_n)$, and $a + b = \sum_{t \in F} x_t + \sum_{t \in G} x_t$. Then $g(b) = n$. Let $k = \max \text{supp}(b)$ and pick

$$b' \in (-b + (-a + A)) \cap X \cap \mathbb{N}^{2^{k+1}} \cap \{y \in X : g(y) > n\}.$$

Then $a + b + b' \in A$ so $a + b + b' = \sum_{t \in F'} x_t + \sum_{t \in G'} x_t$ for some $F' \in \mathcal{P}_f(E_1)$ and some $G' \in \mathcal{P}_f(E_m)$ where $\max F' < m < \min G'$. Then $m = g(b')$, so $m > n$. But then $a + b + b' = \sum_{t \in H} x_t$ where $H \cap E_1 \neq \emptyset$, $H \cap E_n \neq \emptyset$, and $H \cap E_m \neq \emptyset$, a contradiction. Thus we do have some $n \in \mathbb{N}$ such that $\{y \in X : g(y) \leq n\} \in q$.

Now let $k = \max \text{supp}(x_n)$ and pick $a \in \mathbb{N}^{2^{k+1}}$ such that $-a + A \in q$ (using the fact here that $r \in \mathbb{H}$). Let $l = \max \text{supp}(a)$ and pick $b \in (-a + A) \cap \mathbb{N}^{2^{l+1}} \cap \{y \in X : g(y) \leq n\}$. Pick $F \in \mathcal{P}_f(E_1)$ and m and G such that $G \in \mathcal{P}_f(E_m)$ and $\max F < m < \min G$. Then $g(b) = m$ so $m \leq n$. But $\min \text{supp}(a + b) > k$ so $\max F > n$ so $m > n$, a contradiction.\Box

Recall that a semigroup (S, \cdot) is weakly cancellative provided that for all $x, y \in S$, $\{s \in S : x \cdot s = y \text{ or } s \cdot x = y\}$ is finite.

Lemma 2.5. Let (S, \cdot) be an infinite weakly cancellative semigroup. Then there is a countable subsemigroup T of S such that if $q, r \in \beta S$, $q = q \cdot q$, and $r \cdot q \in \overline{T}$, then $r \in \overline{T}$ and $q \in \overline{T}$. Furthermore, if A is the subsemigroup of \overline{T} generated by the idempotents of T^* and B is the subsemigroup of βS generated by the idempotents of S^*, then $\text{cl}A = \overline{T} \cap \text{cl}B$.

Lemma 2.3 a countable group

Proof. Let \(C_1 \) be an arbitrary countable subsemigroup of \(S \). Given \(n \in \mathbb{N} \) and \(C_n \), let

\[
D_n = C_n \cup \{ s \in S : (\exists x \in C_n)(x \cdot s \in C_n \text{ or } s \cdot x \in C_n) \}
\]

and let \(C_{n+1} \) be the semigroup generated by \(D_n \). Let \(T = \bigcup_{n=1}^{\infty} C_n \). Trivially \(T \) is a countable subsemigroup of \(S \). Notice also that if \(x \in T \), \(s \in S \), and either \(xs \in T \) or \(sx \in T \), then \(s \in T \).

Now assume that \(q, r \in \beta S \), \(q = q \cdot q \), and \(r \cdot q \in T \). Then \(T \cap r \cap q = r \cap q \cdot q \cdot q \) so \(\{ x \in S : x^{-1}T \in q \} \subseteq r \cdot q \). Pick \(x \in T \) such that \(x^{-1}T \in q \). Then \(x^{-1}T \subseteq T \) so \(T \in q \).

Now \(\{ s \in S : s^{-1}T \in q \} \subseteq r \). We claim that

\[
\{ s \in S : s^{-1}T \in q \} \subseteq T
\]

so that \(T \in r \). Let \(s \in S \) such that \(s^{-1}T \in q \). Pick \(x \in s^{-1}T \cap T \). Then \(sx \in T \) so \(s \in T \).

One easily shows by induction on \(k \) that if \(k \in \mathbb{N} \) and \(r_1, r_2, \ldots, r_k \) are idempotents in \(\beta S \) and \(r_1 \cdot r_2 \cdots r_k \in T \) then \(\{ r_1, r_2, \ldots, r_k \} \subseteq T \).

Trivially \(c\ell A \subseteq T \cap c\ell B \). For the reverse inclusion, let \(p \in T \cap c\ell B \) and let \(C \in p \). Now \(C \cap T \in p \) so \(C \cap T \cap B \neq \emptyset \) so pick \(k \in \mathbb{N} \) and idempotents \(r_1, r_2, \ldots, r_k \) in \(S^* \) such that \(r_1 \cdot r_2 \cdots r_k \in C \cap T \). Then \(\{ r_1, r_2, \ldots, r_k \} \subseteq T \) so \(r_1 \cdot r_2 \cdots r_k \in C \cap A \).

We are now ready to fulfill the first of our objectives of this section.

Theorem 2.6. Let \(S \) be a semigroup which is embeddable in a compact topological group and let \(B \) be the subsemigroup of \(\beta S \) generated by the idempotents of \(S^* \). Then \(c\ell B \) is not a semigroup. In fact, there exist an idempotent \(q_1 \) of \(S^* \) and a point \(q \) in the closure of the set of idempotents of \(S^* \) such that \(q_1 \cdot q \notin c\ell B \).

Proof. By Lemma 2.5 we may assume that \(S \) is countable. Pick by Lemma 2.3 a countable group \(G \) containing \(S \), an \(H \)-map \(\psi : \omega \to G \), and a subsemigroup \(V \) of \(G^* \) which contains all of the idempotents of \(G^* \) such that \(\overline{\psi} \) is an isomorphism from \(H \) onto \(V \). Also pick a sequence \(\langle s_n \rangle_{n=1}^{\infty} \) in \(S \) such that for each \(n \), \(\max \supp \psi^{-1}(s_n) + 1 < \min \supp \psi^{-1}(s_{n+1}) \). For each \(n \), let \(x_n = \psi^{-1}(s_n) \).

Let \(\{ E_n : n \in \mathbb{N} \} \) be a partition of \(\mathbb{N} \) into infinite sets and for each \(n \) let \(p_n \) be an idempotent in \(\beta \mathbb{N} \) such that for each \(m \in \mathbb{N} \),

\[
\{ \sum_{t \in F} x_t : F \in \mathcal{P}_f(E_n) \text{ and } \min F > m \} \in p_n.
\]
Let p be a cluster point in βN of the sequence $\langle p_n \rangle_{n=1}^\infty$ and pick by Lemma 2.4 some $A \in p_1 + p$ such that there do not exist $r \in \mathbb{H}$ and an idempotent $q \in N^*$ such that $A \in r + q$.

Let $q_1 = \tilde{\psi}(p_1)$ and let $q = \tilde{\psi}(p)$. Then q_1 is an idempotent of G^* and since $p_1 \in \epsilon\{x_n : n \in \mathbb{N}\}$, $q_1 \in \epsilon\{s_n : n \in \mathbb{N}\}$ so q_1 is an idempotent of S^*. Similarly, each $\tilde{\psi}(p_n) \in S^*$ so $q \in S^*$ and $q \in \epsilon\{\tilde{\psi}(p_n) : n \in \mathbb{N}\}$.

Now $A \in p_1 + p$ so $\psi[A] = \tilde{\psi}(p_1 + p) = q_1 \cdot q$. Suppose $\overline{\psi[A]} \cap B \neq \emptyset$ and pick $k \in \mathbb{N}$ and idempotents r_1, r_2, \ldots, r_k in S^* such that $\psi[A] \in r_1 \cdot r_2 \cdot \ldots \cdot r_k$. (We may presume that $k \geq 2$, since $r_1 = r_1 \cdot r_1$.) Then $\tilde{\psi}^{-1}(r_1 \cdot r_2 \cdot \ldots \cdot r_k) \notin \mathbb{H}$ and $\tilde{\psi}^{-1}(r_k)$ is an idempotent of N^* and $A \notin \tilde{\psi}^{-1}(r_1 \cdot r_2 \cdot \ldots \cdot r_k) + \tilde{\psi}^{-1}(r_k)$, a contradiction. \hfill \Box

We now turn our attention to showing that under the same hypotheses $P(S)$ is not the smallest compact subsemigroup of βS containing the idempotents of S^*.

Lemma 2.7. Let S and T be discrete semigroups, let $h : S \rightarrow \beta T$ be a homomorphism and let $\tilde{h} : \beta S \rightarrow \beta T$ denote the continuous extension of h. Then $\tilde{h}(P(S)) \subseteq P(T)$.

Proof. Let $x \in P(S)$, let $B \in \tilde{h}(x)$ and let $n \in \mathbb{N}$ with $n \geq 3$. Pick $C \in x$ such that $\tilde{h}(C) \subseteq B$ and pick $\langle a_t \rangle_{t=1}^n$ such that $FP(\langle a_t \rangle_{t=1}^n) \subseteq C$. We shall construct inductively $\langle b_t \rangle_{t=1}^n$ such that $FP(\langle b_t \rangle_{t=1}^n) \subseteq B$.

Given $z \in FP(\langle h(a_t) \rangle_{t=2}^n)$, we have $h(a_1)z \in \overline{B}$ so pick $D_z \in h(a_1)$ such that $D_z \subseteq \overline{B}$. Also $B \in h(a_1)$ so pick

$$b_1 \in B \cap \bigcap\{D_z : z \in FP(\langle h(a_t) \rangle_{t=2}^n)\}.$$

Now let $m \in \{1, 2, \ldots, n-2\}$ and assume we have chosen $\langle b_t \rangle_{t=1}^m$ such that for each $c \in FP(\langle b_t \rangle_{t=1}^m)$ and $z \in FP(\langle h(a_t) \rangle_{t=m+1}^n)$, $cz \in \overline{B}$. Given $c \in FP(\langle b_t \rangle_{t=1}^m)$ and $z \in FP(\langle h(a_t) \rangle_{t=m+2}^n)$ one has $h(a_{m+1})z \in \overline{B}$, $ch(a_{m+1}) \in \overline{B}$, and $ch(a_{m+1})z \in \overline{B}$. Since λ_c and ρ_z are continuous, we may pick D_z, E_c, and $F_{c,z}$ in $h(a_{m+1})$ such that $D_z \subseteq \overline{B}$, $cE_c \subseteq \overline{B}$, and $cF_{c,z} \subseteq \overline{B}$. Pick

$$b_{m+1} \in B \cap \bigcap\{D_z : z \in FP(\langle h(a_t) \rangle_{t=m+1}^n)\}$$

$$\cap \bigcap\{E_c : c \in FP(\langle b_t \rangle_{t=1}^m)\}$$

$$\cap \bigcap\{F_{c,z} : c \in FP(\langle b_t \rangle_{t=1}^m) \text{ and } z \in FP(\langle h(a_t) \rangle_{t=m+1}^n)\}.$$

Having chosen $\langle b_t \rangle_{t=1}^m$, pick for each $c \in FP(\langle b_t \rangle_{t=1}^m)$, $E_c \in h(a_n)$ such that $cE_c \subseteq \overline{B}$ and pick $b_n \in B \cap \{E_c : c \in FP(\langle b_t \rangle_{t=1}^m)\}$. \hfill \Box
Recall that if \(q \in \beta \mathbb{N}, \langle x_n \rangle_{n=1}^{\infty} \) is a sequence in a Hausdorff topological space \(X \), and \(y \in X \), then \(y = q\lim_{n \in \mathbb{N}} x_n \) if and only if whenever \(U \) is a neighborhood of \(y \) in \(X \), \(\{ n \in \mathbb{N} : x_n \in U \} \in q \).

Lemma 2.9. Let \((S, \cdot)\) be a semigroup, let \(p \in \beta S \), let \(q \in P(\mathbb{N}, +) \), and let \(r = q\lim_{n \in \mathbb{N}} p^n \). Then \(r \in P(S) \).

Proof. This follows immediately from Lemma 2.7 and the observation that the map \(n \mapsto p^n \) is a homomorphism from \((\mathbb{N}, +)\) into \(\beta S \). \(\square \)

Given \(v \in \mathbb{N}^* \) and \(n \in \mathbb{N} \), we write \(n \ast v \) for the sum of \(v \) with itself \(n \) times. (The notation \(n \cdot v \) represents the operation in the semigroup \((\beta \mathbb{N}, \cdot)\), and \(n \ast v \) need not equal \(n \cdot v \). For example, if \(v \) is an idempotent, then \(2 \ast v = v \) and \(2 \cdot v \neq v \).)

Lemma 2.9. Let \(\langle x_n \rangle_{n=1}^{\infty} \) be a sequence in \(\mathbb{N} \) such that for each \(n \in \mathbb{N} \), \(\max \supp(x_n) < \min \supp(x_{n+1}) \), let \(q \in P(\mathbb{N}) \), let
\[
v \in \{ x_n : n \in \mathbb{N} \}^*,
\]
and let \(p = q\lim_{n \in \mathbb{N}} n \ast v \). Then
\[
p \in \mathbb{H} \cap P(\mathbb{N}) \setminus \text{cl} \bigcup \{ \beta \mathbb{N} + e : e \in \mathbb{N}^* \text{ and } e + e = e \}.
\]

Proof. By Lemma 2.8 \(p \in P(\mathbb{N}) \). One shows easily by induction on \(n \) that for \(n, k \in \mathbb{N} \), \(\{ \sum_{t \in F} x_t : |F| = n \text{ and } \min F > k \} \subset n \ast v \). In particular, each \(n \ast v \in \mathbb{H} \) and so \(p \in \mathbb{H} \). Let
\[
A = \{ \sum_{t \in F} x_t : F \in \mathcal{P}_f(\mathbb{N}) \text{ and } \min F > |F| \}.
\]
Then given any \(n \in \mathbb{N} \), \(\{ \sum_{t \in F} x_t : |F| = n \text{ and } \min F > n \} \subset A \) so \(A \in p \). We claim that \(A \cap \bigcup \{ \beta \mathbb{N} + e : e \in \mathbb{N}^* \text{ and } e + e = e \} = \emptyset \).

Suppose instead we have some \(e = e + e \) such that \(A \cap (\beta \mathbb{N} + e) \neq \emptyset \) and pick \(y \in \mathbb{N} \) such that \(-y + A \in e \). Pick \(l \in \mathbb{N} \) such that \(\min \supp(x_l) > \max \supp(y) \). We claim that for each \(m \geq l \), if \(k = \max \supp(x_m) \), then \(y \in FS(\langle x_t \rangle_{t=m+1}^{\infty}) \subset FS(\langle x_t \rangle_{t=m+1}^{\infty}) \setminus \mathbb{N}^{2k+1} \). So let \(z \in (-y + A) \cap \mathbb{N}^{2k+1} \). Then \(y + z \in A \) so pick \(F \in \mathcal{P}_f(\mathbb{N}) \) such that \(y + z = \sum_{t \in F} x_t \). Let \(H = \{ t \in F : t > m \} \) and let \(K = \{ t \in F : t < m \} \). Now \(\supp(y) \cup \supp(z) = \supp(y + z) = \bigcup_{t \in F} \supp(x_t) = \bigcup_{t \in H} \supp(x_t) \cup \bigcup_{t \in K} \supp(x_t) \). Also \(\max \bigcup_{t \in H} \supp(x_t) \leq \max \supp(x_m) \).
Taking \(l = m \), we have \(y \in FS(\langle x_i \rangle_{i=1}^l) \). Also we have that for all \(m \geq l \), \(FS(\langle x_i \rangle_{i=m+1}^\infty) \in e \).

Given any \(B \in e \), we let \(B^* = \{ z \in B : -z + B \in e \} \). Then by [6, Lemma 4.14], whenever \(z \in B^*, -z + B^* \in e \). Now we choose inductively \(\langle F_j \rangle_{j=1}^l \), with \(\min F_i > l \) and for each \(i \in \{1, 2, \ldots, l-1\} \), \(\max F_i < \min F_{i+1} \), with \(\bigcup_{j=1}^l \bigcup_{t \in F_j} x_t \in (-y + A)^* \). Since \((-y + A)^* \in e \), pick \(F_1 \) with \(\min F_1 > l \) such that \(\bigcup_{t \in F_1} x_t \in (-y + A)^* \). Having chosen \(\langle F_j \rangle_{j=1}^l \), let \(m = \max F_i \) and pick \(z \in \left(-\sum_{j=1}^l \bigcup_{t \in F_j} x_t \right) + (-y + A)^* \bigcap FS(\langle x_i \rangle_{i=m+1}^\infty) \) and pick \(F_{i+1} \) with \(\min F_{i+1} \geq m + 1 \) such that \(z = \sum_{t \in F_{i+1}} x_t \). Now \(y + \sum_{j=1}^l \bigcup_{t \in F_j} x_t \in A \) and \(y = \bigcup_{t \in H} x_t \) for some \(H \) with \(\max H \leq l \) so \(\min(H \cup \bigcup_{j=1}^l F_j) \leq l \) while \(|H \cup \bigcup_{j=1}^l F_j| \geq l + 1 \), a contradiction. \(\square \)

Theorem 2.10. Let \(S \) be a semigroup which can be embedded in a compact topological group. Let

\[
L = e \ell \bigcup \{ \beta S \cdot e : e \in S^* \text{ and } e = e \cdot e \}.
\]

Then \(L \) is a left ideal of \(\beta S \) and there exists \(r \in P(S) \setminus L \). (So if \(S \) is commutative, \(L \cap P(S) \) is a compact subsemigroup of \(\beta S \) containing the idempotents of \(S^* \) and properly contained in \(P(S) \).)

Proof. By [6, Theorem 2.17], \(L \) is a left ideal of \(\beta S \). We first show that it suffices to assume that \(S \) is countable. To see this, pick by Lemma 2.5 a countable subsemigroup \(T \) of \(S \) such that if \(q, r \in \beta S \), \(q = q \cdot q \) and \(r \cdot q \in T \), then \(r \in T \) and \(q \in T \). Assume that we have some \(r \in P(T) \setminus e \ell \bigcup \{ T \cdot e : e \in T^* \text{ and } e = e \cdot e \} \). Then \(r \in P(S) \).

If \(A \in r \) such that \(\overline{A \cap \bigcup T \cdot e : e \in T^* \text{ and } e = e \cdot e} = \emptyset \), then \(A \cap \bigcup \{ \beta S \cdot e : e \in S^* \text{ and } e = e \cdot e \} = \emptyset \). So we shall assume that \(S \) is countable.

Pick by Lemma 2.3 a countable group \(G \) containing \(S \), an \(\mathbb{H} \)-map \(\psi : \omega \to G \), and a subsemigroup \(V \) of \(G^* \) which contains all of the idempotents of \(G^* \) such that \(\psi|_\mathbb{H} \) is an isomorphism from \(\mathbb{H} \) onto \(V \). Also pick a sequence \(\langle s_n \rangle_{n=1}^\infty \) in \(S \) such that for each \(n \), \(\max \text{supp } \psi^{-1}(s_n) + 1 < \min \text{supp } \psi^{-1}(s_{n+1}) \). For each \(n \), let \(x_n = \psi^{-1}(s_n) \). Let \(q \in P(\mathbb{N}) \), let \(v \in \{ x_n : n \in \mathbb{N} \}^* \), and let \(p = q \lim n \ast v \). Then by Lemma 2.9

\[
p \in \mathbb{H} \setminus P(\mathbb{N}) \setminus e \ell \bigcup \{ \beta \mathbb{N} + e : e \in \mathbb{N}^* \text{ and } e + e = e \}.
\]
Let \(r = \tilde{\psi}(p) \) and let \(w = \tilde{\psi}(v) \). Then it is routine to establish that
\[r = q \lim_{n \to \infty} w^n \]
and so, by Lemma 2.8 \(r \in P(S) \).

Now we claim that \(r \notin L \). To see this, pick \(A \in p \) such that
\[\overline{A} \cap \bigcup \{ \beta S + e : e \in \mathbb{N}^* \text{ and } e + e = e \} = \emptyset. \]
Then \(\psi[A] \in r \). We claim that
\[\overline{\psi[A]} \cap \bigcup \{ \beta S \cdot e : e \in \mathbb{N}^* \text{ and } e = e \cdot e \} = \emptyset. \]
Suppose instead that we have some \(e = e \cdot e \in \mathbb{N}^* \) and \(y \in S \) such that
\(\psi[A] \in y \cdot e \). \(\overline{\psi^{-1}(e)} \) is an idempotent in \(\mathbb{N}^* \), so it suffices to show that
\(A \in \psi^{-1}(y) + \overline{\psi^{-1}(e)} \). Let \(u = \psi^{-1}(y) \) and let \(k = \max \text{supp}(u) \).

Since \(y^{-1}\psi[A] \in e \) and consequently \(\psi^{-1}[y^{-1}\psi[A]] \in \psi^{-1}(e) \), it suffices to show that
\(\mathbb{N}2^{k+2} \cap \psi^{-1}[y^{-1}\psi[A]] \subseteq -\psi^{-1}(y) + A \). So
\begin{align*}
&\text{let } z \in \mathbb{N}2^{k+2} \cap \psi^{-1}[y^{-1}\psi[A]]. \\
&\text{Then } y\psi(z) \in \psi[A] \text{ so } \psi(u + z) = \\
&\psi(u)\psi(z) = y\psi(z) \in \psi[A] \text{ so } u + z \in A \text{ and thus } z \in -\psi^{-1}(y) + A.
\end{align*}
\(\square \)

3. \(\beta \mathbb{N} \)

Recall that we have seen that \(P(\mathbb{N}, +) \), in addition to being a compact subsemigroup of \((\beta \mathbb{N}, +) \) containing the idempotents, is also a two sided ideal of \((\beta \mathbb{N}, \cdot) \). We see now that it is not the smallest such.

Theorem 3.1. There is a compact subsemigroup of \((\beta \mathbb{N}, +) \) which contains the idempotents of \((\beta \mathbb{N}, +) \), is a two sided ideal of \((\beta \mathbb{N}, \cdot) \), and is properly contained in \(P(\mathbb{N}, +) \).

Proof. Choose \(v \in \{2^2 : n \in \mathbb{N}\}^* \) and \(q \in P(\mathbb{N}) \). Let \(p = q \lim_{n \to \infty} n \ast v \). Then by Lemma 2.8, \(p \in P(\mathbb{N}) \).

Let
\[L = \text{cl} \bigcup \{ \beta \mathbb{N} + e : e \in \mathbb{N}^* \text{ and } e + e = e \}. \]

Then by Lemma 2.9, \(p \notin L \).

Define \(f : \mathbb{N} \to \mathbb{R} \) by putting \(f(n) = \log_2(n) \), and let \(\tilde{f} : \beta \mathbb{N} \to u\mathbb{R} \) denote the continuous extension of \(f \), where \(u\mathbb{R} \) denotes the uniform compactification of \(\mathbb{R} \). We observe that \(\mathbb{R} \) can be regarded as a subspace of \(u\mathbb{R} \), because \(\mathbb{R} \) can be embedded in \(u\mathbb{R} \) by a topological isomorphism. Then by [11, Lemma 2.1], \(\tilde{f} \) has the following properties:

(i) \(\tilde{f}(x \cdot y) = \tilde{f}(x) + \tilde{f}(y) \) for every \(x, y \in \beta \mathbb{N} \) and
(ii) \(\tilde{f}(x + y) = \tilde{f}(y) \) for every \(x \in \beta \mathbb{N} \) and every \(y \in \mathbb{N}^* \).
For a subset S of \mathbb{R}, $\rho(S)$ will denote $\text{cl}_{u\mathbb{R}}(S) \setminus \mathbb{R}$. Let $X = \rho(\{2^n : n \in \mathbb{N}\})$. We claim that $X \subseteq \text{int}_{\rho(\mathbb{R})}(\rho(\mathbb{R}) \setminus (\rho(\mathbb{R}) + \rho(\mathbb{R})))$.

To see this, put $E = \{2^n : n \in \mathbb{N}\}$ and put $F = \mathbb{R} \setminus ((-1, 1) + E)$. Using the uniform structure on \mathbb{R} defined by the usual metric, it follows from [6, Exercise 21.5.3] that there is a uniformly continuous function $\phi : \mathbb{R} \to [0, 1]$ such that $\phi(E) = \{0\}$ and $\phi(F) = \{1\}$. Let $\tilde{\phi} : u\mathbb{R} \to [0, 1]$ denote the continuous extension of ϕ. If $W = \tilde{\phi}^{-1}([0, \frac{1}{2}])$, then W is an open neighbourhood of X in $u\mathbb{R}$ and $W \subseteq \text{cl}_{u\mathbb{R}}((-1, 1) + E)$. We shall show that $W \cap (\rho(\mathbb{R}) + \rho(\mathbb{R})) = \emptyset$.

To see this, assume that $\xi, \eta \in \rho(\mathbb{R})$ and that $\xi + \eta \in W$. We can choose $s, t \in \mathbb{R}$ with $|s-t| > 2$ such that $s+\eta$ and $t+\eta$ are both in W, because $\{\zeta \in u\mathbb{R} : \zeta + \eta \in W\}$ is a neighbourhood of ξ in $u\mathbb{R}$, and so its intersection with \mathbb{R} is unbounded. (If $B \subseteq \mathbb{R}$ is bounded, then $\text{cl}_{u\mathbb{R}}(B) \subseteq \mathbb{R}$.) Then $-s+W$ and $-t+W$ are both neighbourhoods of η. However, we claim that $(-s+W) \cap (-t+W) \cap \mathbb{R}$ is bounded. To see this, note that for any $x \in (-s+W) \cap (-t+W) \cap \mathbb{R}$ we may pick $n, m \in \mathbb{N}$ such that $|s+x-2^n| < 1$ and $|t+x-2^n| < 1$. Since $|s-t| > 2$ we have that $n \neq m$. On the other hand, $|2^n - 2^m| = |2^n - x - s + t + x - 2^n - s - t| < 2 + |s-t|$. Thus there are only finitely many pairs (n, m) for which there is some x with $|s+x-2^n| < 1$ and $|t+x-2^n| < 1$. Given any such (n, m) and x, $|x| \leq |x+s-2^n| + |s-2^n| < 1 + |s-2^n|$ so $(-s+W) \cap (-t+W) \cap \mathbb{R}$ is bounded as claimed. But this contradicts the assumption that $\eta \in \rho(\mathbb{R})$.

It follows from (ii) above that $J = \tilde{f}^{-1}[\rho(\mathbb{R}) \setminus W]$ is a closed subset of \mathbb{N}^* which is a left ideal of $(\beta\mathbb{N}, +)$. Furthermore, it follows from (i) above that $\mathbb{N}^* \cdot \mathbb{N}^* \subseteq J$, and in particular J is a two sided ideal of (\mathbb{N}^*, \cdot). Let V denote the smallest compact subset of $\beta\mathbb{N}$ which is both a left ideal of $(\beta\mathbb{N}, +)$ and satisfies $\mathbb{N}^* \cdot \mathbb{N}^* \subseteq V$. Then $V \subseteq J$. We claim that V is an ideal of $(\beta\mathbb{N}, \cdot)$. To see this, let $n \in \mathbb{N}$. Then by [6, Theorem 6.54] $nV = Vn$ so it suffices to show that $nV \subseteq V$. To see this, let $W = \{p \in \beta\mathbb{N} : n \cdot p \in V\}$. Then it is easy to verify that W is a compact subset of $\beta\mathbb{N}$ which is both a left ideal of $(\beta\mathbb{N}, +)$ and satisfies $\mathbb{N}^* \cdot \mathbb{N}^* \subseteq W$, and consequently $V \subseteq W$ and therefore $nV \subseteq V$ as required.

We claim that $L \cup V$ is a closed left ideal of $(\beta\mathbb{N}, +)$ and an ideal of $(\beta\mathbb{N}, \cdot)$. It is obviously a closed left ideal of $(\beta\mathbb{N}, +)$. To see that it is an ideal of $(\beta\mathbb{N}, \cdot)$, it is routine to verify that for any $n \in \mathbb{N}$, $n \cdot L = L \cdot n \subseteq L$. Also, for any $x \in \mathbb{N}^*$, $(x \cdot L) \cup (L \cdot x) \subseteq \mathbb{N}^* \cdot \mathbb{N}^* \subseteq V$. SUBSEMIGROUPS OF βS 245
We claim that the element \(p \in P(\mathbb{N}) \) defined above is not in \(V \).

To see this, observe that \(\tilde{f}(v) \in \text{cl}_{uR} (E) \) and hence, by property (ii) above, that \(\beta \mathbb{N} + v \subseteq \tilde{f}^{-1}[\text{cl}_{uR} E] \subseteq \tilde{f}^{-1}[W] \). So \((\beta \mathbb{N} + v) \cap J = \emptyset \) and consequently \((\beta \mathbb{N} + v) \cap V = \emptyset \). Now let \(r = \lim_{n \in \mathbb{N}} (n - 1) * v \).

Then \(p = r + v \in \beta \mathbb{N} + v \), so \(p \notin V \). We have already noted that \(p \notin L \). Thus \(P(\mathbb{N}) \nsubseteq L \cup V \). \(\square \)

References

[10] I. Schur, Über die Kongruenz \(x^m + y^m = z^m (\mod p) \), Jahresbericht der Deutschen Math.-Verein. 25 (1916), 114-117.

Department of Mathematics, Howard University, Washington, DC 20059

E-mail address: nhindman@aol.com

Department of Pure Mathematics, University of Leeds, Leeds LS2 9J2, UK

E-mail address: d.strauss@hull.ac.uk