An Upper Bound for the Cellularity of the Phase Space of a Minimal Dynamical System

by

Stefan Geschke

Electronically published on May 20, 2010
AN UPPER BOUND FOR
THE CELLULARITY OF THE PHASE SPACE
OF A MINIMAL DYNAMICAL SYSTEM

STEFAN GESCHKE

Abstract. Let G be a topological group acting continuously on an infinite compact space X. Suppose the dynamical system (X, G) is minimal. If G is κ-bounded for some infinite cardinal κ, then the cellularity of X is at most κ.

1. Introduction

The purpose of this note is to point out a relation between cardinal invariants of the phase space and the group of a minimal dynamical system.

Generalizing a theorem of Bohuslav Balcar and Alexander Blaszczyk [1], it was shown in [4] that whenever (G, X) is a minimal dynamical system and G is \aleph_0-bounded, then the Boolean algebra $\text{ro}(X)$ of regular open subsets of X is the completion of a free Boolean algebra. In particular, X is of countable cellularity. This result is clearly related to an older result of V. V. Uspenski [7], who showed that if an \aleph_0-bounded group acts continuously and transitively on a compact space X, then X is Dugundji and hence of countable cellularity.

Using some of the ideas from [4], we show that whenever G is a κ-bounded group and (G, X) is a minimal system, then the cellularity of X is at most κ.

2010 Mathematics Subject Classification. 54H20.
Key words and phrases. boundedness, cellularity, minimal dynamical system.
©2010 Topology Proceedings.
This result might be interesting for compact homogeneous spaces. A well-known open question by van Douwen (see [6]) about compact homogeneous spaces is whether the cellularity of such a space can be larger than 2^{\aleph_0}. One feasible approach to show that it cannot is to try to construct, for a given compact homogeneous space X, a 2^{\aleph_0}-bounded group acting sufficiently transitively on X, i.e., in such a way that that (G, X) is a minimal system.

2. Preliminaries

Let G be a topological group and X a compact space. An action of G on X is a homomorphism φ from G to the group $\text{Aut}(X)$ of autohomeomorphisms of X. The action φ is continuous if the map $G \times X \to X; (g, x) \mapsto \varphi(g)(x)$ is continuous. Typically we will not mention φ and write gx instead of $\varphi(g)(x)$.

A topological group G together with a topological space X and a continuous action of G on X is a dynamical system. X is the phase space of the system. For every $x \in X$, the set $Gx = \{gx : g \in G\}$ is the G-orbit of x. The dynamical system (G, X) is minimal if every G-orbit is dense in X.

For an infinite cardinal κ, the group G is κ-bounded if for every non-empty open subset O of G there is a set $S \subseteq G$ of size κ such that $SO = G$. Here SO denotes the set $\{gh : g \in S \land h \in O\}$.

The cellularity of X is the least cardinal κ such that every family \mathcal{O} of size $> \kappa$ of non-empty open subsets of X contains two distinct sets with a non-empty intersection.

3. Proof of the main result

Let X be a compact space. $C(X)$ denotes the space of continuous real valued functions on X equipped with the sup-norm $\|\|_\infty$. If G acts on X via φ, then the natural action of G on $C(X)$ is defined by letting $gf = f \circ \varphi(g)$. It is easily checked that G acts on $C(X)$ by isometries and that the action of G on $C(X)$ is continuous if the action on X is continuous.

The action of G on $C(X)$ provides us with a simple way of constructing G-equivariant quotients of X, i.e., quotients for which the quotient map commutes with the group actions. Let B be a closed
subalgebra of $C(X)$ which is closed under the action of G on $C(X)$. Define an equivalence relation \sim_B on X as follows:

For all $x, y \in X$, let $x \sim_B y$ if and only if for all $b \in B$, $b(x) = b(y)$. It is well known that X/\sim_B is Hausdorff. Since B is closed under the action of G, the action of G on X is compatible with \sim_B. Hence, there is a natural action of G on X/\sim_B. This action is continuous. X/\sim_B is a G-equivariant quotient of X.

Definition 3.1. A continuous map $f : X \to Y$ between topological spaces is semi-open if for every non-empty open set $O \subseteq X$, $f[O]$ has a non-empty interior.

The following is well known.

Lemma 3.2. Let (G, X) and (G, Y) be dynamical systems. Assume that $\pi : X \to Y$ is continuous, onto, and G-equivariant; i.e., assume that π commutes with the actions. Suppose that (G, X) is a minimal system. Then π is semi-open.

For the convenience of the reader we include a proof of this lemma.

Proof: Suppose $O \subseteq X$ is a non-empty open set. Let $U \subseteq O$ be a non-empty open set with $\operatorname{cl}_X U \subseteq O$. Since (G, X) is minimal, every G-orbit in X meets the set U. It follows that $GU = X$. Since X is compact, a finite number of translates of U covers X. It follows that a finite number of translates of $\pi[U]$ and hence of $\pi[\operatorname{cl}_X U]$ cover Y. Since the translates of $\pi[\operatorname{cl}_X U]$ are closed sets, one of them has a non-empty interior, by the Baire Category Theorem. It follows that $\pi[\operatorname{cl}_X U]$, and therefore $\pi[O]$, has a non-empty interior. \qed

Lemma 3.3. Let κ be an infinite cardinal. Suppose G is a κ-bounded group acting continuously on a metric space Z. Then every G-orbit in Z has a dense subset of size $\leq \kappa$.

Proof: Let $z \in Z$. For every $n \in \omega$, let U_n be the open ball of radius $\frac{1}{2^n}$ around z. Since G acts continuously on Z, the map $G \to Z$ defined by $g \mapsto gz$ is continuous. Thus, there is an open neighborhood V_n of the neutral element of G such that $V_n z \subseteq U_n$. Since G is κ-bounded, there is a set $S_n \subseteq G$ of size $\leq \kappa$ such that $S_n V_n = G$. Now $Gz = S_n V_n z \subseteq SU_n$. It is easily checked that $\bigcup_{n \in \omega} S_n z$ is dense in Gz. \qed
In the following, we use elementary submodels of $\mathcal{H}_\chi = (\mathcal{H}_\chi, \in)$ for some infinite cardinal χ. Here, \mathcal{H}_χ denotes the set of all sets whose transitive closure is of size $< \chi$. Readers not familiar with the method of elementary submodels might consult [2], [3], or [5] for an introduction.

Fix a sufficiently large cardinal χ. Note that, for every cardinal κ, if M is an elementary submodel of \mathcal{H}_χ and $\kappa \subseteq M$, then for every set $S \in M$ which is of size κ, $S \subseteq M$ since M contains a bijection between κ and S.

Lemma 3.4. Let Z be a metric space and suppose that a κ-bounded group acts continuously on Z. If M is an elementary submodel of \mathcal{H}_χ such that $\kappa \cup \{\kappa, Z, G\} \subseteq M$, then $\text{cl}_Z(Z \cap M)$ is closed under the action of G.

Proof: Let $z \in Z \cap M$. By Lemma 3.3, Gz has a dense subset D of size κ. M knows about this and hence we may assume $D \subseteq M$. Since $\kappa \subseteq M$, $D \subseteq M$. It follows that $Gz \subseteq \text{cl}_Z(Z \cap M)$.

Now let $z \in \text{cl}_Z(Z \cap M)$. By the first part of the proof, $G(Z \cap M) \subseteq \text{cl}_Z(Z \cap M)$. Hence,

$$Gz \subseteq G \text{cl}_Z(Z \cap M) = \text{cl}_Z(G(Z \cap M)) \subseteq \text{cl}_Z(Z \cap M).$$

Corollary 3.5. Let (G, X) be a dynamical system such that G is κ-bounded. If M is an elementary submodel of size κ of \mathcal{H}_χ such that $\kappa \cup \{\kappa, X, G\} \subseteq M$, then $B = \text{cl}_C(X \cap M)$ is a closed subalgebra of $C(X)$, which is closed under the action of G. In particular, X/ \sim_B is a G-equivariant quotient of X of weight $\leq \kappa$.

Proof: By Lemma 3.4, B is closed under the action of G. It is easily checked that $C(X) \cap M$ is a subalgebra of $C(X)$. It follows that $B = \text{cl}_C(X \cap M)$ is a closed subalgebra of $C(X)$.

Now X/ \sim_B is a G-equivariant quotient of X. $C(X/ \sim_B)$ is isometrically isomorphic to B and therefore has a dense subset of size $\leq \kappa$. It follows that X/ \sim_B is of weight $\leq \kappa$. □

Theorem 3.6. Let (G, X) be a minimal system and suppose that G is κ-bounded. Then the cellularity of X is at most κ.

Proof: Let \mathcal{A} be a maximal family of pairwise disjoint non-empty open subsets of X. Let M be an elementary submodel of \mathcal{H}_χ of size κ such that $\kappa \cup \{\kappa, X, G, \mathcal{A}\} \subseteq M$. Let $B = \text{cl}_C(X \cap M)$. By Corollary 3.5, X/ \sim_B is a G-equivariant quotient of X of weight...
\[\leq \kappa. \] Let \(\pi : X \to X/\sim_B \) be the quotient map. By Lemma 3.2, \(\pi \) is semi-open. Note that \(C(X/\sim_B) \) is isometrically isomorphic to \(B \) via the map
\[\cdot \circ \pi : C(X/\sim_B) \to B; f \mapsto f \circ \pi. \]

Claim. \(\mathcal{A} \subseteq M. \)

Let \(O \subseteq X \) be non-empty and open. Choose a non-empty open set \(U \subseteq \pi[O]. \) We may assume that \(U \) is of the form \(f^{-1}[\mathbb{R} \setminus \{0\}] \) for some continuous \(f : X/\sim_B \to \mathbb{R} \) with \(f \circ \pi \in \text{cl}_{C(X)}(C(X) \cap M). \)

Choose \(n \in \omega \) so that \(||f||_\infty - \frac{1}{n} > \frac{1}{n}. \) Let \(f_M : X/\sim_B \to \mathbb{R} \) be such that \(f_M \circ \pi \in C(X) \cap M \) and \(||f - f_M||_\infty < \frac{1}{n}. \) Now
\[U_M = f_M^{-1} \left[\mathbb{R} \setminus \left(\frac{1}{n}, \frac{1}{n} \right) \right] \subseteq U. \]

Note that \(\pi^{-1}[U_M] = (f_M \circ \pi)^{-1} \left[\mathbb{R} \setminus \left(\frac{1}{n}, \frac{1}{n} \right) \right] \) is an element of \(M \) and a subset of \(O. \)

Since \(M \) knows that \(A \) is a maximal family of disjoint open sets, there is \(A \in \mathcal{A} \cap M \) such that \(A \cap \pi^{-1}[U_M] \) is non-empty. It follows that \(\mathcal{A} \cap M \) is a maximal family of disjoint open subsets of \(X \) and therefore \(\mathcal{A} \subseteq M. \) This finishes the proof of the claim.

Since \(|M| \leq \kappa, |\mathcal{A}| \leq \kappa. \)

\[\square \]

References

Hausdorff Center for Mathematics; Endenicher Allee 62; 53115 Bonn, Germany

E-mail address: stefan.geschke@hcm.uni-bonn.de