ON ONE-LOCAL RETRACT IN QUASI-METRIC SPACES

by

OLIVIER OLELA OTAFUDU

Electronically published on November 30, 2014

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.
ON ONE-LOCAL RETRACT IN QUASI-METRIC SPACES

OLIVIER OLELA OTAFUDU

ABSTRACT. We study a concept of 1-local retract in quasi-metric spaces. In this article, we generalize further known results about 1-local retract subsets from metric setting to quasi-metric point of view. In particular we show that any commuting family of nonexpansive self-mappings in a nonempty T_0-quasi-metric space (X, d) for which $A_q(X)$ is compact and normal has a common fixed point and the common fixed point set is a 1-local retract of (X, d).

1. Introduction

A subset A of a metric space (X, m) is said to be a 1-local retract of (X, m) if for every family $\{B_i; i \in I\}$ of closed balls centered in A with nonempty intersection, then $A \cap (\bigcap_{i \in I} B_i) \neq \emptyset$ (see [3], compare [4]). In [4], Khamsi showed that any commutative family of nonexpansive self-mapping defined on a metric space with compact and normal convexity structure has a common fixed point. In this article, we study the concept of 1-local retract in asymmetric setting. Among other things in this paper we consider subspaces 1-local retracts of a nonempty T_0-quasi-metric space and also present some fixed point theorems. In particular we prove that a nonexpansive self-mapping nonempty T_0-quasi-metric space (X, d) for which the set of all q-admissible subsets of X is compact and normal has at least one fixed point.

The concept of 1-local retract is due to Pouzet [4, p.4] and it has been investigated in detail by Khamsi and others (see for instance [3] and [4]). Our investigations are done in parallel with the well-known metric theory of 1-local retract (see [4]) and they confirm the surprising fact that many classical results about 1-local retract in metric spaces do not make essential use of the symmetry of the metric and thus still hold in quasi-metric spaces.

2010 Mathematics Subject Classification. 54E15, 54E35, 54C15,47H10.
Key words and phrases. Point, Normal structure, 1-local retract, q-admissible.
©2014 Topology Proceedings.
This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.