ON SPACES WITH σ-CLOSED-DISCRETE DISCRETE DENSE SETS

by

RODRIGO R. DIAS AND DÁNIEL T. SOUKUP

Electronically published on February 16, 2018

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.
Abstract. The main purpose of this paper is to study e-separable spaces, originally introduced by Georges Kurepa as K'_0 spaces; we call a space X e-separable if and only if X has a dense set which is the union of countably many closed discrete sets. We primarily focus on the behavior of e-separable spaces under products and the cardinal invariants that are naturally related to e-separable spaces. Our main results show that the statement “there is a product of at most \mathfrak{c} many e-separable spaces that fails to be e-separable” is overinsistent with the existence of a weakly compact cardinal.

1. Introduction

The goal of this paper is to study a natural generalization of separability. Let us call a space X e-separable if and only if X has a dense set which is the union of countably many closed discrete sets. The definition is due to Georges Kurepa [18], who introduced this notion as property K'_0 in his study of Souslin’s problem. Later, e-separable spaces appear in multiple papers related to the study of linearly ordered and GO-spaces [11], [25], [26], [30]. In particular, M. J. Faber [11] showed that e-separable GO-spaces are perfect; however, whether the converse implication is true is famously open: is there, in ZFC, a perfect GO-space (or even just a perfect T_3 space) which is not e-separable? Let us refer the interested reader to a paper of Harold Bennett and David Lutzer [5] for more details and results on this topic.
This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.