ON CUT POINTS PROPERTIES OF SUBCLASSES OF CONNECTED SPACES

by

DEVENDER KUMAR KAMBOJ AND VINOD KUMAR

Electronically published on November 28, 2012

This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.
ON CUT POINTS PROPERTIES OF SUBCLASSES OF CONNECTED SPACES

DEVENDER KUMAR KAMBOJ AND VINOD KUMAR

Abstract. We investigate, from the viewpoint of cut points, properties of some subclasses of connected spaces. We prove, without assuming any separation axiom, if a connected space X has (*) i.e., X has a closed $R(i)$ subset H such that there is no proper regular closed, connected subset of X containing H, then there is no proper connected subset of X containing all non-cut points. This is used to show that a connected space having at most two non-cut points and (*) is a COTS with endpoints; also the converse holds. If, in addition, the space is locally connected, then it is compact. In an $R(i)$ connected space, each component of the complement of a cut point is found to contain a non-cut point of the space. For an $R(i)$ connected space X, it is also shown that if the removal of every two-point disconnected set leaves the space disconnected, then, for $a, b \in X$ and a separating set H of $X – \{a,b\}$, $H \cup \{a,b\}$ is a T_{2}^{*} $R(i)$ COTS with endpoints. Also we obtain some other characterizations of COTS with endpoints, and some characterizations of the closed unit interval.

1. Introduction

The idea of the concept of a cut point in a topological space dates back to 1920’s ([see 14, 15]). One of the reasons that the theory of cut points in topological spaces has been gaining importance is because it has found applications in computer science (see e.g. [8]). For the study of cut points, a topological space is assumed to be connected. Herein, by a space we mean a topological space. A point x of a connected space X is a cut point if $X – \{x\}$ is disconnected. So far, for the study of cut points, the space is assumed to be nondegenerate i.e., has at least two points. If a space contains only two points, then both points are non-cut points. We suppose that a space has at least three points.

2010 Mathematics Subject Classification. 54F05, 54F15.

Key words and phrases. Cut point, Non-cut point existence theorem, $R(i)$ connected space, closed point, COTS.

©2012 Topology Proceedings.
This file contains only the first page of the paper. The full version of the paper is available to Topology Proceedings subscribers. See http://topology.auburn.edu/tp/subscriptioninfo.html for information.